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Abstract

The Semantic Web extends the Web as a global information space from a Web

of documents to a Web of data. Currently, there are billions of triples publicly

available in the web data space of different domains. These data become more

tightly interrelated as the number of links in the form of mappings is also growing.

Typically, these data are heterogeneous, distributed and prone to dynamic changes.

Although centralized knowledge bases and/or triple stores can be used to collect and

query large volumes of heterogeneous Semantic Web data, they suffer from many

disadvantages. First, they will become stale unless they are frequently reloaded with

fresh data. Second, they can require significant disk space, especially for triple stores

that use multiple triple indices to optimize queries. Finally, there may be legal or

policy issues that prevent one from copying data or storing it in a centralized place.

Therefore, this dissertation explores ways to address the above challenges from the

perspective of building a federated query answering system for semantic web data.

The system can quickly and effectively find relevant data sources and further answer

queries. It employs an automated mechanism for creating an inverted index used in

determining source relevance. Then, a hybrid approach to answering queries that

involves ideas from information retrieval, information integration and knowledge

bases is applied.

First, the dissertation formally defines a group of concepts to describe a feder-

ated query answering problem for the Semantic Web. Guided by the theoretical

framework, it then presents and implements an efficient, IR-inspired inverted index

named term index to integrate semantic web data sources and determine source

relevance. Based on this term index, four query answering algorithms are proposed.

1
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Each of them is optimized in order to overcome the drawbacks of the previous ones.

The non-structure algorithm takes a set of query subgoals as inputs and dynami-

cally loads all relevant sources into a reasoner to solve the original query. The flat-

structure algorithm optimizes source selection and dynamically answers queries by

reformulating the original conjunctive query into a list of conjunctive query rewrit-

ings. The tree-structure algorithm answers queries by reformulating the original

conjunctive query into an AND/OR tree, generating a query execution plan on the

fly and dynamically executing a bottom-up greedy source collection. The dynamic

cyclic axiom handling algorithm is to make the tree-structure algorithm still return

complete query answers when cyclic axioms are considered. Experiments conducted

using synthetic data and real world data and the theoretical correctness proof of al-

gorithms have demonstrated that a system based on these algorithms can effectively

and correctly scale to dynamic, web-scale knowledge bases.

2
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Chapter 1

Introduction

1.1 Motivation

The World Wide Web has radically altered the way we share knowledge by lowering

the barrier to publishing and accessing documents as part of a global information

space. Hypertext links allow users to traverse this information space using Web

browsers, while search engines index the documents and analyse the structure of

links between them to infer potential relevance to users’ search queries [11]. This

functionality has been enabled by the generic, open and extensible nature of the

Web [34], which is also seen as a key feature in the Web’s unconstrained growth.

The inarguable success of the World Wide Web, particularly search engines such

as Google, may lead one to believe that the Web has reached its full potential as

a global knowledge repository. However, with the amount of data available on the

Web increasing rapidly in recent years, some of our information needs cannot be

met by even today’s state of the art web technologies. In such cases, we still need

3
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significant human intervention to find what we need. One example is that if a user

is looking for some information about the Chairman of RPI’s Computer Science

Department, a reasonable action may be for him to type in “RPI Computer Science

Chair” in a search engine’s query box. However, the search engines will not list the

most relevant documents in the first few result records. The reason is that at RPI’s

websites the department chairs are more commonly referred to as department heads.

In retrieving documents in response to a query, search engines fail to recognize sim-

ilar concepts when they are expressed using different terminologies. In the example

we just discussed, the search engine was unable to recognize that the words “Depart-

ment Chair” and “Department Head” were similar concepts. Another example is:

“find all journals that academic descendants of Marvin Minsky have published in”.

In this example, the search engine fails to find answers because no single data source

can completely satisfy the example information need. Yet, with the integration of

the data sources DBLP 1, Citeseer 2 and AI Genealogy Project (AIGP) 3, an answer

in principle can be obtained: DBLP and Citeseer contain publication metadata such

as authors along with their affiliations, and information about academic descendants

of Marvin Minsky can be found in AIGP. More sophisticated queries like “a list of

academic papers written by Marvin Minsky’s advisees who live in Washington DC”

or “a list of all 4 year colleges with Computer Science Departments within 170 miles

radius of the zip code 18015” are also well beyond the capacities of present day

search technology. However, in all these cases, we intuitively know that the Web

does contain the information we are seeking; we just do not have a fully automated

1http://dbis.uni-trier.de/DBL-Browser/
2http://citeseerx.ist.psu.edu/index
3http://aigp.eecs.umich.edu/

4
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1.1. MOTIVATION

way of getting them.

The reason of the inability of existing search technology to meet our information

needs, as exemplified by the queries above, is that contemporary search technology

is based on keyword matching, not designed for answering structured queries. This

leads to some limiting assumptions for today’s web. One assumption is that in the

Web, a document is deemed to be relevant to a user’s query if its content is “similar”

to the text entered by users. The basic determinant of this similarity is the one

between textual representation of the words in the user’s query and the documents

in the web. However, as shown in the query about RPI’s Computer Science Chair,

the success of the search depends on how correctly we have expressed our query in

terms of the documents available. This is the reason why the contemporary search

technology cannot find “Department Head” when the query is “Department Chair”.

Another limiting assumption is that the Web is viewed as a collection of docu-

ments that are connected via hypertext links. Once a set of relevant documents is

identified using a matching criteria, it is left up to the user to inspect the document

and process the information that is contained in the documents. As a consequence,

when a user’s information needs span multiple documents, he has to manually pro-

cess each document from each result, and merge together the relevant information

by himself. This is the reason why contemporary search technology cannot obtain

integrated information from multiple documents, such as Minsky’s advisees and 4

year colleges mentioned early on.

To help the Web reach its true potential, the Semantic Web has suggested a way

of extending the existing web with strucutre and providing a mechanism to specify

formal semantics that are machine-readable and shareable. In this way, the web

5
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information can be readily interpreted by machines, so machines can perform more

of the tedious work involved in finding, combining and acting upon information on

the web without human intervention. They do so via the use of ontologies. An

ontology is a formal logic-based description of a vocabulary that allows one to talk

about a domain of discourse. The vocabulary is articulated using definitions and

relationships among the defined concepts. As ontologies use formal logic they can

describe a domain unambiguously as long as the information is interpreted using

the same logic. Further, the use of logic makes it possible to use software to “infer”

implicit information in addition to what is explicitly stated.

One of the most exciting things about the Semantic Web is to drive the evo-

lution of the Web as a global information space from a Web of documents to a

Web of data, where not only documents but data is also linked. Underpinning this

evolution is a set of best practices for publishing and connecting structured data

on the Web known as Linked Data 4. These data are often independently gener-

ated, distributed in many locations, heterogeneous from diverse domains such as

biology, government, geography, etc. or in different representation formats such as

databases, XML files, spreadsheets and others, and in large volume as well. In to-

day’s Semantic Web, there are billions of semantic data triples publicly available

in different domains such as people, companies, books, scientific publications, films,

music, television and radio programmes, genes, proteins, drugs and clinical trials,

online communities, statistical and scientific data, and reviews. These data become

more tightly interrelated as the number of links in the form of mappings is also

growing. The process of interlinking open data sources is actively pursued within

4http://linkeddata.org/

6
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Linking Open Data (LOD) [33], which is a project that aims to extend the Web

with a data commons by publishing various open datasets as RDF on the Web and

by setting RDF links between data items from different data sources. Typically,

Semantic Web data exhibits the following features:

• Heterogeneity: data sources cover different, possibly overlapping domains.

Data contained in different sources might be redundant, complementary or

conflicting. Also, the time required to obtain the same amount of data might

vary greatly due to network latency.

• Smallness: data sources in RDF are potentially many small files, around 50

triples according to web data statistics using Sindice 5. This can be shown by

the facts that many large LOD RDF data sources provide an interface for their

individual data objects: e.g. DBpedia has a separate RDF page for each entry,

GeoNames has a separate page for each place, DBLP Berlin has a separate

page for each author and publication, etc. These pages typically have a small

number of RDF triples.

• Dynamicity: data sources are added and removed and sources’ content changes

rapidly over time. Due to this dynamic, it is no longer safe to assume that

information about all sources can be obtained. In particular, sources might

be a priori unknown and can only be discovered at run-time.

• Scalability: The amount of data on the Web is ever increasing. The LOD

project alone already contains roughly 31 billion RDF triples in more than 20

5http://www.sindice.com/

7
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domains. Clearly, efficient query answering that can scale to this amount of

data is essential for the data search on the web.

The development of a data Web opens a new way for addressing complex in-

formation needs for Web search - query answering instead of document relevance.

As exemplified in the second paragraph, contemporary information retrieval (IR)

services such as Google are excellent at finding the most relevant documents for

specialized terms like the names of people and organizations, but are unable to pro-

vide direct answers to specific queries, especially if the answer to the query cannot

be found in any single source. Therefore, the problem of query answering over the

Semantic Web data is becoming more and more important.

Traditionally, query answering has been conducted on relatively small and closed

corpora. Following the idea of LOD, the Web has extended data sources to include

information freely available from the Web, which presents an enormous potential

for integrated querying over multiple distributed data sources. The general proce-

dure to work with multiple, distributed linked data sources is to load the desired

data (for instance, in the form of dumps) into a local, centralized warehouse and

process queries in a centralized way against the merged data set. One represen-

tative solution is the Data Warehouse, which is a database used for reporting and

data analysis [64]. The data stored in the data warehouse are uploaded from the

operational systems, cleansed, transformed, and placed into the data warehouse or

data mart according to a schema, such as the star schema. The data marts store

subsets of data from a warehouse. The star schema is a logical arrangement of

tables in a multidimensional database. The goal of data warehouse is to integrate

applications at the data level and create a centralized and unified view of enterprise

8
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1.1. MOTIVATION

data holdings. However, accounting for the decentralized structure of the Semantic

Web, the centralized approach may not always be practically feasible or desired. For

example, in some cases a complete dump of the data sources may not be available,

instead the data source may only be accessible via a query endpoint. In the case

of frequently changing data sources, the synchronization with the centralized store

becomes a problem. Typically, the centralized approach suffers from the following

disadvantages:

• First, the systems will become stale unless they are frequently reloaded with

fresh data, which can be especially expensive if the knowledge-bases rely on

forward-chaining that starts with the available data and uses inference rules

to extract more data until a goal is reached.

• Second, the systems can require significant disk space, especially for triple

stores that use multiple triple indices to optimize queries. For example, Hex-

astore [80] replicates each triple six times.

• Finally, there may be legal or policy issues that prevent one from copying data

or storing it in a centralized place.

In order to solve the above problems, one can observe a recent paradigm shift

towards federated approaches over the distributed data sources. In this approach, a

query against a federation of data sources is split into queries that can be answered

by the individual data sources and the results are merged by the federator. From

the user perspective this means that data of multiple heterogeneous sources can be

queried transparently as if residing in the same database. Sometimes this approach is

therefore referred to as virtual integration. Approaches to federated query processing
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over linked data are still in their infancy. Some first proposals exist, but none of them

have been practically used on a large scale. In this dissertation, I have designed and

developed a federated Semantic Web query answering solution that recognizes the

reality, that despite our best efforts, heterogeneity, scalability and dynamicity issues

are always inherent in any (Semantic) Web query answering system. Therefore, in

my research, I looked for a practical solution that performs reasonably well, despite

these issues.

1.2 Contributions

In this dissertation, I will explore ways to build an ontology-based information inte-

gration system that can quickly and effectively find relevant data sources and further

answer queries on the fly. This system will receive queries from users, determine

which sources are relevant to the query, retrieve these sources in real-time, and use

them to answer the query. In this system, I designed an automated mechanism for

creating the index to determine source relevance. Then, I furthermore proposed a

hybrid approach that involves ideas from information retrieval, information integra-

tion and knowledge base systems to answer queries. Specifically, my dissertation

makes the following technical contributions:

• I have formally defined a group of concepts to describe a federated query

answering problem for the Semantic Web. In answering a Semantic Web query,

these concepts can be used to reason only with the subset of a knowledge base

that is necessary to answer the given query. As the size of a knowledge base

significantly impacts reasoning time, the source selection framework provides

10
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efficiency gains by enabling a novel, query based, pruning of the knowledge

base.

• Guided by my theoretical framework, I first designed and implemented an

efficient, IR-inspired inverted index named term index to integrate semantic

web data sources and determine source relevance. Based on this term index,

I have designed and implemented a non-structure query answering algorithm,

which takes a set of query subgoals as inputs and dynamically loads all relevant

sources into a reasoner to solve the original query. As demonstrated by my

empirical evaluations, this algorithm has gained better source selectivity and

faster query response time compared to the precursor work done by Qasem et

al.[62].

• In order to overcome the drawbacks of the non-structure algorithm, I suc-

cessively proposed two query optimization algorithms: the flat-structure algo-

rithm and the tree-structure algorithm. The flat-structure algorithm optimizes

source selection and answers queries by reformulating the original conjunctive

query into a list of conjunctive query rewritings and dynamically generate a

query execution plan by selecting relevant sources for each query rewrite. The

tree-structure algorithm answers queries by reformulating the original conjunc-

tive query into an AND/OR tree using the Peer Data Management System

(PDMS) algorithm [28] and dynamically plan the query execution through se-

lecting relevant sources over the tree. Furthermore, in order to make the tree-

structure algorithm still return complete query answers when cyclic axioms

are considered, I also proposed a dynamic cyclic axiom handling algorithm

11
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by improving the tree-structure algorithm. As demonstrated by my empirical

evaluations, all my proposed algortihms perform better than the non-structure

algorithm over average query response time, source selectivity, index accesses

and scalability.

• I have theoretically proved the soundness and completeness of the non-structure

algorithm, the flat-structure algorithm, the tree-structure algorithm and the

cyclic axiom handling algorithm.

In order to appropriately scope my dissertation, I will not consider automated

ontology alignment algorithms [71], although the work described herein can benefit

from any advances in the area. I will also not consider issues of trust and provenance

[3], although these will clearly be important in the long term. Finally, I will not

address user interface issues [37] [49], assuming instead that front-ends can translate

the user input into a common query language.

1.3 Thesis Overview

The dissertation contains the following chapters (in additional to this introduction

chapter):

• Chapter 2 provides the readers with an overview of various technologies and

research areas that I have explored, used and benefited from in this disserta-

tion. In this chapter, I discuss various technologies that are the building blocks

of the Semantic Web. In addition, I also survey work from related research

12
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areas such as Information Retrieval, Query Optimization and Information In-

tegration, etc. and describe how the work summarized is similar to or different

from the work I have done in my dissertation.

• Chapter 3 lays the theoretical foundation of my work, describes my problem

decomposition and presents an IR-inspired indexing scheme - term index to

index Semantic Web data. Furthermore, based on the term index, it defines

two basic functions to explain how to use the term index to select potentially

relevant sources for the query answering. This work has been published in WI

2010 [45].

• Chapter 4 discusses the query answering algorithms for my system. This

chapter describes and compares three algorithms: the non-structure algorithm,

the flat-structure algorithm and the tree-structure algorithm. For each of

them, the correctness proof is given. These algorithms have been published in

WI 2010 [45], CIKM 2010 [42] and ISWC 2010 [43].

• Chapter 5 examines the cyclic axiom handling by improving the tree-structure

algorithm. This chapter first gives an formal definition of the cyclic axiom,

then explains why the original tree-strucuture algorithm is incomplete in pres-

ence of cyclic axioms and describles how the original tree-structure algorithm

can be improved to dynamically handle cyclic axioms. After that, the correct-

ness proof of the proposed algorithm is given. This work has been published

in SSWS 2011 [44].

• Chapter 6 describes how I empirically evaluated my algorithms from two as-

pects: the heterogeneity evaluation using multiple ontologies and the large
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scale evaluation. I have developed a multi-ontology benchmark - Lehigh Cus-

tomizable Data-driven Benchmark (LCDBM) which I used to do the hetero-

geneity evaluation of my algorithms. The benchmark work have been pub-

lished in IWEST 2010 [46] and ORE 2012 [47].

• Chapter 7 summarizes the work, gives open problems of the work and sets

directions for future work.

14
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Background and Related Work

This chapter serves two purposes. First it provides some background information

about some specific technologies that I have either used or benefited from in this

dissertation. This is not a detailed tutorial of these subject matters. However,

wherever appropriate, I point the interested readers to relevant references. In Section

2.1, I provide a brief introduction to the Semantic Web languages. Most of the

materials in this section are not necessarily a prerequisite to understanding the

details of my thesis. They are mainly presented to give the reader a bird’s-eye

view of the myriads of Semantic Web languages. In Section 2.2, I survey the rich

area of centralized Semantic Web knowledge system. Since a key element of this

dissertation is a new scheme for indexing distributed semantic data, I mainly focus on

the literature on indexing schemes used among them. In Section 2.3, I describe the

related work on query optimization, especially those in Database and Semantic Web

areas since my later proposed query optimization algorithms got inpired by some

of them. Finally, in Section 2.4, I research the rich area of information integration
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from a Semantic Web perspective. I mainly discuss two categories of related work:

the traditional information integration taking Global-As-View (GAV) and Local-

As-View (LAV) as representatives and the ontology related information integration.

In each of this four sections, I mention how the work summarized is similar to or

different from the work I have done in my dissertation.

2.1 Semantic Web Languages

The Semantic Web is promising to be the next generation of the Web. Largely

based on HTML, the current Web provides the information that is only human

understandable rather than machine understandable. The goal of the Semantic Web

is to provide a common framework that allows data and knowledge to be shared

and reused across applications, enterprises and communities by making the web

documents’ meaning explicit. To do this, Semantic Web researchers have developed

OWL and OWL 2, which are ontology languages that extend Resource Description

Framework (RDF) [40] and RDF Schema [10]. In this section, I first describe RDF,

RDF query language - SPARQL and RDF Schema. Then, I briefly introduce OWL,

OWL 2 and their logical basis - Description Logics.

2.1.1 RDF

RDF is a data model that is based on the idea of making statements about “re-

sources” in the form of subject-predicate-object expressions. These statements are

often referred to as triples. In RDF, a resource can be anything that is uniquely

identifiable via a Uniform Resource Identifier (URI). Note: URIs are more general
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than the well-known web resource identifier URLs. Specifically, there is no require-

ment that a URI needs to point to a resource that is accessed via the Internet. In

an RDF triple, the subject denotes the resource that we want to make a statement

about. The predicate denotes traits or aspects of that resource and expresses a rela-

tionship between the subject and the object. The object can be a resource identified

by a URI, however it can alternatively be a literal value like a string or a number.

RDF is closely related to Semantic Networks. The Semantic Networks is a well-

known and very flexible knowledge representation mechanism. Similar to Semantic

Networks, RDF statements can be expressed in a graph with labeled nodes con-

nected by directed and labeled edges. Essentially, the subject of a RDF statement

is the source node of the edge, the object is the target node of the edge and the edge

is the predicate relating the subject and the object. Consider, for example, that we

want to say “Jeff Heflin” advises “Yingjie Li”. This statement will be represented

in an RDF graph with a source that denotes “Jeff Heflin” spreading out two edges:

one directed edge from source to destination that denotes the “rdf:type” relation-

ship and a destination that denotes a class “Professor” and the other directed edge

from source to destination that denotes the “advises” relationship and a destina-

tion that denotes “Yingjie Li”. In RDF we need URIs (or URLs) to refer to the

namespace “ex” of our example, the entity “Jeff Heflin”, the “advises” relationship,

the “rdf:type” relationship, the class “Professor” and the entity “Yingjie Li”. The

following is one version of the RDF triples represented in XML syntax.

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
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http://swat.cse.lehigh.edu/jeff-heflin 

ex:Professor http://swat.cse.lehigh.edu/yingjie-li 

rdf:type ex:advises 

Figure 2.1: RDF graph

xmlns:ex="http://swat.cse.lehigh.edu.com/"

>

<rdf:Description rdf:about="http://swat.cse.lehigh.edu/jeff-heflin">

<rdf:type rdf:resource="http://swat.cse.lehigh.edu/Professor"/>

<ex:advises rdf:resource="http://swat.cse.lehigh.edu/yingjie-li"/>

</rdf:Description>

</rdf:RDF>

Corresponding to the triple representation, Figure 2.1 is the graphical represen-

tation.

2.1.2 SPARQL

As stated in Section 2.1.1, RDF is a directed, labeled graph data format for repre-

senting information in the Web. The Simple Protocol and RDF Query Language

(SPARQL) is a SQL-like language for querying RDF data. SPARQL allows for a

query to consist of triple patterns, conjunctions, disjunctions, and optional patterns.
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A triple pattern is like an RDF triple, but with the option of a variable in place of

RDF terms (i.e., URIs, URLs, literals or blank nodes) in the subject, predicate or

object positions. A set of triple patterns written as a sequence of triple patterns

with conjunction or disjunction relations composes a Basic Graph Pattern (BGP).

BGP allows applications to make queries where the entire query pattern must match

for there to be a solution. Since regular, complete structures cannot be assumed in

all RDF graphs, the optional patterns provides the facility if the optional part does

not match, it creates no bindings but does not eliminate the solution. An example

of a SELECT query is as follows:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?mbox

WHERE { ?x foaf:name ?name .

?x foaf:mbox ?mbox . }

The first line defines a namespace prefix, the last two lines use the prefix to

express a RDF graph pattern to be matched. Identifiers beginning with question

mark ? identify variables. In this query, we are looking for resource ?x participating

in triples with predicates foaf :name and foaf :mbox and want the subjects of these

triples.

In addition to specifying graph to be matched, constraints can be added for

values using FILTER construct. An example of string value restriction is FILTER

regex(?mbox, “company”) that specifies regular expression query. An example of

number value restriction is FILTER(?price < 20) that specifies that ?pricemust be

less than 20. A few special operators are defined for the FILTER construct. They
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include isLiteral for testing whether a variable is literal, bound to test whether

variable was bound and others.

The matching part of the query may include OPTIONAL patterns. If the triple

to be matched is optional, it is evaluated when it is present, but the matching does

not fail when it is not present. Optional sections may be nested. It is possible

to make UNION of multiple matching graphs - if any of the graphs matches, the

match will be returned as a result. The FROM part of the query is optional and

may specify the RDF dataset on which query is performed.

The sequence of result may be modified using the following keywords with the

meaning similar to SQL:

• ORDER BY: ordering by variable value.

• DISTINCT: unique results only.

• OFFSET: offset from which to show results.

• LIMIT: the maximum number of results.

There are four query result forms. In addition to the possibility of getting the

list of values found it is also possible to construct RDF graph or to confirm whether

a match was found or not.

• SELECT: returns the list of values of variables bound in a query pattern.

• CONSTRUCT: returns an RDF graph constructed by substituting variables

in the query pattern.

• DESCRIBE: returns an RDF graph describing the resources that were found.
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• ASK: returns a boolean value indicating whether the query pattern matches

or not.

The CONSTRUCT form specifies a graph to be returned with variables to be

substituted from the query pattern, such as in the following example that will return

graph saying that Alice knows last two people when ordered by alphabet from the

given URI (the result in the RDF graph is not ordered, it is a graph and so the

order of triples is not important).

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT { <http://example.org/person#Alice> foaf:knows ?x }

FROM <http://example.org/foaf/people>

WHERE { ?x foaf:name ?name }

ORDER BY desc(?name)

LIMIT 2

The DESCRIBE form will return information about matched resources in a form

of an RDF graph. The exact form of this information is not standardized yet, but

usually a blank node closure like for example Concise Bounded Description (CBD)

is expected. In short, all the triples that have the matched resource in the object

are returned; when a blank node is in the subject, then the triples in which this

node participates as object are recursively added as well.

The ASK form is intended for asking yes/no questions about matching - no in-

formation about matched variables is returned, the result is only indicating whether

matching exists or not.
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Person 

Student Professor 

UndergradStudent GradStudent 

rdfs:subClassOf rdfs:subClassOf 

rdfs:subClassOf 
rdfs:subClassOf 

Figure 2.2: RDFS graph

2.1.3 RDF Schema

As shown in section 2.1.1, RDF is a simple data model and as such it does not have

any significant semantics. In order to address this shortcoming, on top of RDF,

RDF Schema (RDFS) as a W3C standard provides additional modeling primitives

to define classes, subclass relationships between classes, properties, subproperty

relationships between properties, and restrictions on property domains and ranges,

and so on. In this way, RDFS provides simple functions to build vocabularies for

RDF statements and thus for associating metadata to each other.

Figure 2.2 depicts how a set of RDFS subClassOf statements can be used to

express the hierarchy of a set of concepts. As with RDF, RDFS statements can be

also expressed in XML. The statements below define the classes and their hierarchy

shown in Figure 2.2, and in addition, specify the domain class and range class for

the property advises.

<rdfs:Class rdf:ID = "Person"/>

<rdfs:Class rdf:ID = "Student"/>
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<rdfs:subClassOf rdf:resource = "#Person"/>

</rdfs:Class>

<rdfs:Class rdf:ID = "Professor">

<rdfs:subClassOf rdf:resource = "#Person"/>

</rdfs:Class>

<rdfs:Class rdf:ID = "UndergradStudent">

<rdfs:subClassOf rdf:resource = "#Student"/>

</rdfs:Class>

<rdfs:Class rdf:ID = "GradStudent">

<rdfs:subClassOf rdf:resource = "#Student"/>

</rdfs:Class>

<rdfs:Property rdf:ID = "advises">

<rdfs:domain rdf:resource = "#Professor"/>

<rdfs:range rdf:resource = "#Student"/>

</rdfs:Property>

The limited semantics provided by RDFS limited primitives however did not

prove sufficient to handle real world modeling needs. For instance, they cannot

model class disjointness and intersection relationships, property symmety, cardinal-

ity, etc. This is one of the reasons for the development of more expressive languages

such as OWL and OWL 2 that will be introduced in the next section.

2.1.4 OWL and OWL 2

RDFS only has limited expressiveness. More powerful description languages are

proposed for establishing vocabularies for describing Semantic Web data. These
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vocabularies usually known as ontologies, define terms in a domain and their rela-

tionships, both within the same ontology and cross ontologies. According to the

official ontology description [59], an ontology consists of classes which denote a set

of instances, properties which denote binary relationships between instances and

axioms that relate classes, properties and instances. Further, as ontologies are web

documents, they also have an unique document identifier (a URL).

Among those ontology languages, OWL (Web Ontology Language) has become

the W3C recommendation. OWL is based on RDF and RDFS and adds more

language constructs for describing classes and properties, including more relations

between classes (e.g. disjointness), cardinality (e.g. exactly one), equality, richer

typing of properties, characteristics of properties (e.g. symmetry), and enumerated

classes.

<owl:Class rdf:ID = "Chair">

<owl:intersectionOf rdf:parseType = "Collection">

<owl:Class rdf:about = "#Person"/>

<owl:Restriction>

<owl:onProperty rdf:resource = "#headOf"/>

<owl:someValuesFrom rdf:resource = "#Department"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

The above OWL statements defines the class “Chair” as the intersection of the

class “Person” and an anonymous class of instances for which at least one value of

the property “headOf” is an instance of the class “Department”. Simply speaking,
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this expresses the constraint that a chair has to be a person who is the head of a

department.

In order to make OWL more expressive, the W3C Recommendation for OWL

2 was published in 2009. This document essentially clarifies some ambiguities in

OWL and adds some useful features such as property composition, which is needed

to define axioms for statements such as “an uncle is the brother of a parent.”.

<rdf:Description rdf:about = "hasUncle">

<owl:propertyChainAxiom rdf:parseType = "Collection">

<owl:ObjectProperty rdf:about = "hasParent"/>

<owl:ObjectProperty rdf:about = "hasBrother"/>

</owl:propertyChainAxiom>

</rdf:Description>

The above OWL 2 statements defines the property “hasUncle” to be the com-

position of two properties: “hasParent” and “hasBrother”. Technically, this means

that we want “hasUncle” to connect all individuals that are linked by a chain of two

properties of “hasParent” and “hasBrother”.

In OWL 2, there are three sublanguages. OWL 2 EL is a fragment that has

polynomial time reasoning complexity and is particularly useful in applications em-

ploying ontologies that contain very large numbers of properties and/or classes.

OWL 2 QL is designed to enable easier access and query to data stored in databases

and is aimed at applications that use very large volumes of instance data, and where

query answering is the most important reasoning task. OWL 2 RL is a rule subset of

OWL 2 and aimed at applications that require scalable reasoning without sacrificing

too much expressive power.
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2.1.5 Description Logics

OWL and OWL 2 are both based on Description Logics (DL). Generally, DLs are

a family of logics that are decidable fragments of first-order predicate logic. First-

order logic is a formal system and with a specified domain of discourse over which

the quantified variables range, one or more interpreted predicate letters, and proper

axioms involving the interpreted predicate letters are defined [67]. DLs focus on de-

scribing classes and roles, and have a set-theoretic semantics. Different DLs include

different subsets of logical operators.

DLs can be used to represent the knowledge of an application domain in a struc-

tured and formally well understood way. In DLs, a knowledge base has two compo-

nents, the TBox and the ABox. The TBox introduces the vocabulary (terminology)

of an application domain, while the ABox contains facts (assertions) about named

individuals in terms of this vocabulary. The vocabulary consists of concepts, which

denote sets of individuals, and roles, which denote binary relationships between

individuals.

The semantics of DL is described using the set theoretic approach. In describing

the semantics one considers interpretations I that consist of a nonempty set ∆I (do-

main of interpretation) and an interpretation function that assigns to every atomic

concept A a set AI ⊆ ∆I and to every role R a binary relation RI ⊆ ∆I × ∆I . Table

2.1 lists various OWL and OWL 2 constructors, their DL syntax, and the semantic

conditions. We say that an interpretation is a model of a statement iff the semantic

conditions specified in table 2.1 for that statement hold in the interpretation. An

interpretation is a model of a knowledge base or ontology iff it is a model of every

statement/axiom in the knowledge base/ontology.
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Constructor/ DL Semantics Constructor/ DL
Axiom name Axiom name

owl:Thing ⊤ ∆I owl:sameAs a ≡ b
owl:Nothing ⊥ ∅ owl:differentFrom a ̸= b

rdfs:subClassOf C1 ⊑ C2 CI
1 ⊆ CI

2 rdfs:domain ⊤ ⊑ ∀P−.C

rdfs:subPropertyOf P1 ⊑ P2 PI
1 ⊆ PI

2 rdfs:range ⊤ ⊑ ∀P.C

owl:intersectionOf C1 ⊓ C2 (C1 ⊓ C2)
I = CI

1 ∩ CI
2 owl:equivalentClass C1 = C2

owl:unionOf C1 ⊔ C2 (C1 ⊔ C2)
I = CI

1 ∪ CI
2 owl:equivalentProperty P1 = P2

owl:complementOf ¬C (¬C)I = ∆I \ CI owl:disjointWith C1 ≡ ¬C2

owl:TransitiveProperty P ⊑ P+ PI = (PI )+ owl:SymmetricProperty P ⊑ P−

owl:inverseOf P ⊑ S− (P I )− owl:FunctionalProperty ⊤ ⊑≤ 1P

owl:allValuesFrom ∀P.C (∀P.C)I = {x|∀y, owl:InverseFunctional ⊤ ⊑≤ 1P−

⟨x,y⟩ ∈ PI → y∈CI} Property

owl:dataAllValuesFrom ∀DP.DR (∀DP.DR)I = {x|∀y, owl:cardinality ≤ nP⊓ ≥ nP

⟨x,y⟩ ∈ DPI → y∈DR} owl:dataCardinality ≤ nDP⊓ ≥ nDP

owl:someValuesFrom ∃P.C (∃P.C)I = {x|∃y, owl:disjointUnionOf (C, C1,...,Cn) C− = C−
1 ⊔ ... ⊔ C−

n

⟨x,y⟩ ∈ PI and y∈CI} and C−
i ⊓ C−

j = ∅
owl:dataSomeValuesFrom ∃DP.DR (∃DP.DR)I = {x|∃y, for each 1 ≤ i, j ≤ n

such that i ̸= j

⟨x,y⟩ ∈ DPI and y∈DR} owl:ReflexiveProperty ∀x : x ∈ ∆I

→ (x, x) ∈ P

owl:minCardinality ≥nP (≥nP)I = {x|̸=({y, owl:IrreflexiveProperty ∀x : x ∈ ∆I

→ (x, x) ̸∈ P

⟨x,y⟩ ∈ PI}) ≥ n } owl:AsymmetricProperty ∀x, y : (x, y) ∈ R
→ (y, x) ̸∈ P

owl:dataMinCardinality ≥nDP (≥nDP)I = {x|̸=({y, propertyDisjointWith (P1,...,Pn) Pi ⊓ Pj = ∅
⟨x,y⟩ ∈ DPI}) ≥ n } for each 1 ≤ i, j ≤ n

such that i ̸= j

owl:maxCardinality ≤nP (≤nP)I = {x|̸=({y, propertyChainAxiom P1 ◦ ... ◦ Pn ⊑ P

⟨x,y⟩ ∈ PI}) ≤ n } owl:hasSelf {x|(x, x) ∈ P}
owl:dataMaxCardinality ≤nDP (≤nDP)I = {x|̸=({y,

⟨x,y⟩ ∈ DPI}) ≤ n }
owl:oneOf {o1,....,on} {o1,....,on}I = {oI1,....,o

I
n}

Table 2.1: OWL and OWL 2 syntax and semantics

The statements in the TBox and in the ABox of most DL languages can be

represented by formulas in first-order logic (FOL). From a FOL point of view a

concept can be viewed as a unary predicate whereas a role can be viewed as a binary

predicate. In addition to atomic concepts and roles, all description logic languages

allow their users to build complex descriptions of concepts and roles. Note: the

TBox can be used to assign names to these complex descriptions. Each description

logic language is distinguished by the type of complex descriptions it allows the user

to use.

A system built on a certain DL not only stores terminologies and assertions, but

also offers services that reason about them. Typical reasoning tasks for a TBox are
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to determine whether a description is non-contradictory (satisfiablity) or whether

one is subsumed by the other (subsumption). A typical reasoning task for an ABox

is consistency checking. DLs use set operators and standard logic symbols for their

description constructors. Following is an example of a DL knowledge base.

TBox

Computer ⊑ Electronics

USComputer ≡ Computer ⊓ ∃madeIn.{US}

USComputerSoldOnline ≡ USComputer ⊓ ∃soldBy.OnlineStore

NonUSComputer ≡ Computer ⊓ ¬USComputer

ABox

USComputer(DELL-XPS), soldBy(DELL-XPS,AMAZON),

madeIn(TOSHIBA-A136,JAPAN), Computer(TOSHIBA-A136),

OnlineStore(AMAZON)

In the example above, Electronics is a simple concept description and descrip-

tions like Computers, USComputers etc. are complex concept descriptions as they

are defined in terms of other concepts. Note: once they are defined, a complex

DL concept can be used to build even more complex descriptions. Given the above

knowledge base a DL reasoner can perform reasoning tasks like finding all the sub-

classes of Electronics. Note although there is only one explicit subclass of Elec-

tronics, the reasoner will be able to infer all other implicit subclasses from the

descriptions available in the knowledge base.
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2.2 Information Retrieval for Semantic Web

Given that a key element of this dissertation is a new IR-inspired scheme for indexing

distributed RDF data, it is useful to survey the application of IR for Semantic Web

and particularly the indexing schemes that were designed for RDF data storage.

Based on my survey, the major disadvantage of the former is that they primarily

focus on document search rather than query answering. The major disadvantages of

the latter are that they rely on centralized knowledge bases and that the indexes (or

replication) are quite expensive in terms of space. My goal is to leave the original

data at its source, to have compact local representations that help us locate this

data and to directly answer queries. In this section, I will first introduce some work

about the application of IR for Semantic Web. Then, I will summarize the related

work on indexing schemes for RDF data storage.

I categorize the related work on IR for Semantic Web into two categories: search

for documents or ontological elements and search for ontologies. In the first cate-

gory, Kandogan et al. developed a semantic search engine - Avatar, which combines

the traditional text search engine with use of ontology annotations [36]. Avatar

has two main functions: a) extraction and representation - by means of UIMA

framework, which is a workflow consisting of a chain of annotators extracted from

documents and stored in the annotation store; b) interpretation - process of auto-

matically transforming a keyword search to several precise searches. Avatar consists

of two main parts: semantic optimizer and user interaction engine. When a query is

entered into the former, it will output a list of ranked interpretations for the query;

then the top ranked interpretations are passed to the latter, which will display the

interpretations and the retrieved documents from the interpretations.
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Bhagwat et al. proposed a semantic-based file system search engine- Eureka,

which uses an inference model to build the links between files and a File Rank

metric that is to rank the files according to their semantic importance [8]. Eureka

has two main parts: a) crawler which extracts file from file system and generates two

kinds of indices: keywords’ indices that record the keywords from crawled files, and

rank index that records the File Rank metrics of the files; b) when search terms are

entered, the query engine will match the search terms with keywords’ indices, and

determine the matched file sets and their ranking order by an information retrieval-

based metrics and File Rank metrics.

Jiang et al. proposed a full-Text Search Engine for the Semantic Web called

OntoSearch [35]. It was developed to allow simple keyword based query of ontologies

by passing keywords to Google, packaged in such a way as to only return ontological

data in RDF. In this approach, search starts with a term-based query which yields

to a set of documents, from these documents semantic metadata is extracted and

used for a spreading activation search in an ontology. The extended set of concepts

is used to rank the search results of the term based search. Ranking is done using

the cosine measure with concepts from the ontology being introduced as additional

dimensions in the vector space.

In the second category, Swoogle [18] is a Semantic Web Search Engine developed

at the University of Maryland. Swoogle crawls and indexes all types of Semantic

Web Documents (SWDs); these documents are indexed and stored in a triple store

database. Swoogle allows this database to be queried using a simple keyword based

interface; all ontologies which match the keywords are returned to the user, with

additional contextual descriptions providing information from linked SWDs. The
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interface to Swoogle limits its usefulness as a query tool. Only simple keyword

based searches are possible, and additional work must be performed if one requires

ontologies which contain certain structures or if instance data for a particular class

is required.

OntoKhoj [58] is a system developed by the University of Missouri. It crawls the

Web searching for ontologies which it aggregates and classifies using an intelligent

algorithm which is trained using the DMOZ database 1. The latter contains a large

number of websites, sorted into human classified categories. Its search rankings are

performed using an algorithm influenced by the Pagerank algorithm developed by

Google. The ontologies are ranked using a calculated weighting based on the num-

ber of hyperlinked references to the ontology from other Semantic Web Documents.

These are prioritised by the type of relationship: instantiation, sub-class and do-

main/range. OntoKhoj suffers from the same drawback for ontology searching as

Swoogle, in that only keyword based searching is possible. OntoKhoj differs from

Swoogle in that OntoKhoj only allows searching of ontologies, not of other Semantic

Web documents which reference ontologies.

As for the indexing schemes for RDF data storage, Harth and Decker proposed

storing RDF data based on multiple indices, while taking into consideration context

information about the provenance of the data [29]. It constructs six indexes that

cover all 24 = 16 possible access patterns of quads in the form {s, p, o, c}, where

c a is the context of triple {s, p, o}. This scheme allows for the quick retrieval of

quads conforming to an access pattern where any of s, p, o, c is either specified or

a variable. Thus, it is also oriented towards simple statement-based queries, but it

1http://www.dmoz.org/
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does not allow for efficient processing of more complex queries such as conjunctive

queries.

A similar multiple-indexing approach has been suggested by Wood et al. in the

Kowari system [82]. Kowari also stores RDF statements as quads, in which the first

three items form a standard RDF triple and a fourth, meta item, describes which

model the statement appears in. Like the work of Harth and Decker [29], Kowari

identifies six different orders in which the four node types can be arranged such that

any collection of one to four nodes can be used to find any statement or group of

statements that match it. Thus, each of these orderings acts as a compound index,

and independently contains all the statements of the RDF store. Kowari solution

does not consider the 4! = 24 possible permutations of the four quad items, neither

the 3! = 6 possible permutations of the three items in a triple. Thus, if the meta

nodes are ignored, the number of required indices is reduced to 3, defined by the

three cyclic orderings {s, p, o}, {p, o, s}, and {o, s, p}. These indices cannot provide,

for example, a sorted list of the subjects defined for a given property. Thus, Kowari

does not allow for efficient processing of more complex queries either.

Then, in order to support complex queries using a multi-index approach, Hexa-

store [80] attempted to achieve scalability by replicating each triple six times: one

for each sorting order of subject, predicate and object. Then, there are six indexing

schemes: {s, p, o}, {s, o, p}, {p, s, o}, {p, o, s}, {o, s, p} and {o, p, s}. Meanwhile, in

order to save storage space, Hexastore employs a dictionary encoding. Instead of

storing entire strings or URIs, it stores shortened versions or keys. In particular,

it maps string URIs to integer identifiers. Thus, apart from the six indices using
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identifiers (i.e., keys) for each RDF element value, a Hexastore also maintains a map-

ping table that maps these keys to their corresponding strings. The Hexastore has

been demonstrated that this strategy results in good response time for conjunctive

queries.

YARS2 [31] is another native RDF store system where index structures and query

processing algorithms are designed from scratch and optimized for RDF processing.

Like the work of Harth and Decker [29], YARS2 stores RDF data in the form of quads

{s, p, o, c} by extending standard RDF data model (subject, predicate, object) with

the context. The proposed index structure in YARS2 is based on lexicon and quad

indexes. The lexicon indexes operate on the string representation of RDF nodes

and allow the retrieval of their object identifiers (OIDs). It consists of nodeoid,

oidnode and the keyword indexes. While the nodeoid and the oidnode are used

to map OIDs to node values and vice versa, the keyword indexes keep an inverted

index to string literals in order to speed up full-text searches operations. The quad

indexes allow the management of more complex queries. As each element of the

quad {s, p, o, c} can be either specified or a variable, there is 24 = 16 possible

access patterns. In order to save storage space, an optimized solution was proposed

allowing the coverage of all access patterns using only 6 indexes rather than 16. For

instance, the poc index is used to process not only {?, p, ?, ?} but also {?, p, o, ?}

and {?, p, o, c}. The novelty of YARS2 lies in the use of multiple indexes to cover

different access patterns. However, in YARS2, if more efficient query processing can

be achieved, more disk space will be still needed.

GRIN [78] is a novel index developed specifically for graph-matching queries in

RDF. It identifies selected central vertices and identifies the distance of other nodes
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from these vertices. Basically, the GRIN index is a binary tree. The set of leaf nodes

in the tree form a partition of the set of triples in the RDF graph. Interior nodes

are constructed by finding a “center” triple, denoted c, and a radius value, denoted

r. An interior node in the binary tree implicitly represents the set of all vertices in

the RDF graph that are within r units of distance (i.e. less than or equal to r links)

from the center. Compared to the previously mentioned indexing approaches, the

GRIN index is more compact, but it still is not clear how it could be adapted for a

distributed context.

MonetDB [72] exploits the fact that RDF data typically has many fewer predi-

cates than triples, thereby vertically partitioning the data for each unique predicate

and sorting each predicate table on subject, object order. In other words, MonetDB

applies a column-oriented data storage instead of a relational data storage. Here,

the column corresponds to the predicate and works as an predicate based index. Ac-

cording to this way, MonetDB is very good at RDF queries with lots of predicates

since only the predicates relevant for the query need to be accessed.

RDF-3X [55] employs an exhaustive-indexing approach by building clustered B+-

trees on all six S(subject), P (predicate) and O(object) permutations and also all

permutations of six binary and three unary projections. For the projection indexes,

the missing component(s) (S, P , or O) are replaced by count aggregates, for fast

statistical lookups. In all indexes, all S, P , O components are implemented as integer

identifiers rather than the original literals (URLs or string constants). RDF-3X uses

a dictionary with literal-to-identifier and identifier-to-literal mappings to speed up

full-text search. RDF-3X uses query optimization techniques such as selectivity

estimation, sort-joins and hash-joins.
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2.3 Query Optimization

Since my query optimization algorithms got inspired by Database query optimization

techniques, in this section, I mainly survey the query optimization literatures in

Database and RDF SPARQL query areas.

In Database, query optimization is the process of selecting the most effcient

query-evaluation plan for a query. To choose among different query-evaluation plans,

the optimizer has to estimate the cost of each evaluation plan. Computing the

precise cost of evaluation of a plan is usually not possible without actually evaluating

the plan. Instead, optimizers make use of statistical information about the relations,

such as relation sizes and index depths, to make a good estimate of the cost of a plan.

Once the query plan is chosen, the query is evaluated with that plan, and the result

of query is output. During this process, we first need a cost estimation model used

to evaluate the cost of each plan. Then, we also need an enumeration mechanism

to examine each query plan, assign costs and chooses the one with lowest cost. In

this step, the join ordering is particularly important because the performance of a

query plan is determined largely by the order in which the relations are joined.

The database query optimizer generally makes use of statistical information

stored in the DBMS catalog to estimate the cost of a plan. The relevant catalog

information about relations includes:

• The number of tuples in the relation.

• The number of blocks containing tuples of the relation.

• The size of a tuple of the relation in bytes.
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• The blocking factor of the relation - that is, the number of tuples of relation

that fit into one block.

• The number of distinct values that appear in the relation for some specific

attribute.

• The selection cardinality of one attribute of the relation.

In real implementation, since the update of the above catalog information in-

curs a substantial amount of overhead, most systems do not update them on every

modification. Instead, the updates are done during periods of light system load.

In the join ordering optimization, there are a number of join algorithms that can

potentially be used, depending on what catalog information used to compute the

join cost such as the number of tuples of the input tables, the number of rows that

match the join condition, and the operations required by the rest of the query. A

brief explanation of the more commonly occuring join types and their corresponding

improvements is described as follows:

• Nested loops: For each tuple in the outer join relation, the entire inner relation

is scanned and any tuples that match the join condition are retained. If either

of the tables is very large, the efficiency of this algorithm drops substantially.

There are many improvements of it have been proposed. The Block nested

loops join is one such work [81]. It only scans the entire relations for each block

in the outer relation, as opposed to for each tuple in the nested loop. This

results in more computation for each tuple in the inner relation, but requires

far less scans of it.
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• Sort-based join: This join technique [17] sorts both joining relations on the

join attributes into two sorted lists and then merges these two sorted lists.

Tuples are joined on the fly in the merging phase. As soon as two tuples from

the two relations have their join attribute values match, these two tuples are

joined and output and merging resumes in the tuples (they are sorted and

therefore are ordered by their join attribute values) that follow. Otherwise,

the tuple with the smaller attribute value between the two is dropped because

it has no hope to be joined with other tuples. This join is useful for joins

between large relations without indexing supports [81], especially when the

join predicate does not offer much filtering (the join result is large).

• Hash join: A hash function is applied to the join attribute of the smaller

relation, and a hash table is built [81]. The larger table is then scanned

and the relevant rows found by looking into the hash table. This is done by

computing the same hash value on the hash key (join attribute) and checks

for a match in the hash table. The advantage of this join is that it is only

necessary to read each table once and no sorting is necessary. Ideally, the

smaller relation should be able to fit into main memory.

If both relations are sorted on the join attribute, then the Sort-based join is the

most efficient. If one of the relations is very large and indexes are used, nested loops

are preferred. For cases where one of the relations is small enough to fit into main

memory, block loops or hash joins are favoured. Hash joins work best when there is

a very large difference in the size of the relations. The efficiency of the Sort-based

join is one of the reasons why we’re interested in the order or the relation that results

from a join.
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Besides, another important query optimization approach is Magic Sets [4], which

is a general algorithm for rewriting queries to compute the fix point of cyclic axioms.

Here, a cyclic axiom is one that references the same (or equivalent) classes (or

properties) on both sides of the subsumption relation. For instance, ∃P.C ⊑ C is

a cyclic axiom, where C is a class and P is a property. The Magic Sets applies

the sideways information passing strategy (SIPS), executes a top-down evaluation

of a query by modifying the original program by means of additional rules and

improves the query answering efficiency by restricting the computation to facts that

are related to the query. The SIPS strategy describes how bindings passed to a

rule’s head by unification are used to evaluate the predicates in the rule’s body. For

instance, let V be an atom that has not yet been processed, and Q be the set of

already considered atoms, then a SIPS specifies a propagation Q →X V , where X

is the set of the variables bound by Q, passing their values to V .

In RDF SPARQL query optimization, since SPARQL queries can be executed

as SQL queries, a lot of SQL query optimization techniques have been applied to

improve the performance of SPARQL queries. Stocker Markus et al. [74] proposed

a selectivity-based query optimization approach, which calculates the selectivity of

each query triple pattern in the Basic Graph Pattern (BGP) and then uses the

selectivity information to direct the query planning. The selectivity heuristics they

used are calculated as follows:

• Variable Counting (VC): the selectivity of a triple pattern is computed ac-

cording to the type and number of unbound components and is characterized

by the ranking sel(s) < sel(o) < sel(p), i.e. subjects are more selective than

objects and objects more selective than predicates.
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• Variable Counting Predicates (VCP): it is very close to VC. The only difference

is a default selectivity of 1.0 for triple patterns joined by bound predicates.

• Triple Pattern Selectivity (TPS): it is estimated by the formula sel(t) =

sel(s)× sel(p)× sel(o), where sel(t) denotes the selectivity for the triple pat-

tern t, sel(s) the selectivity for the subject s, sel(p) the selectivity for the

predicate p, and sel(o) the selectivity for the object o. The (estimated) selec-

tivity is a real value in the interval [0, 1] and corresponds to the (estimated)

number of triples matching a pattern.

• Join Triple Pattern Selectivity (JTPS): given the upper bound size SP for a

joined triple pattern P , the selectivity of P is estimated as sel(P ) = SP

T 2 , where

SP denotes the upper bound size of P and T 2 denotes the square of the total

number of triples in the RDF dataset. Given two related properties p1, p2 and

their join relation (relation type), the SP is estimated as the number of triples

satifying a BGP of p1 and p2 such as {⟨?x, p1, ?y⟩, ⟨?x, p2, ?z⟩}.

Michael Schmidt [68] proposed a scheme for the constraint-based query opt-

mization of SPARQL queries. Generally speaking, the key idea of constraint-based

optimization is as follows. Given a query and a set of integrity constraints over the

database, the goal is to find more efficient queries that are semantically equivalent to

the original query for each database instance that satisfies the constraints. The con-

straints that are given as input may have been specified by the user, automatically

extracted from the underlying database, or may be implicitly given by the seman-

tics of RDFS when SPARQL is coupled with an RDFS inference system. Michael’s

work first translates And-only blocks (or full And-only queries), into conjunctive
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queries. In a second step, it then uses the Chase & Backchase (C&B) algorithm

[16] to minimize these conjunctive queries and translate the minimized conjunctive

queries (i.e., the output of the C&B algorithm) back into SPARQL, which usually

gives more efficient SPARQL queries. The C&B algorithm does the following: given

a conjunctive query q and a set of constraints as input, it lists all minimal (with

respect to the number of atoms in the body) rewritings of q that conform to the

given constraints.

Edna Ruckhaus et al. presented a cost-based SPARQL query optimization

method [66]. In their approach, ontologies are modeled as a deductive database.

The extensional database is comprised of meta-level predicates (e.g., subClassOf)

that represent the information explicitly modeled by the ontology. The intensional

database corresponds to the deductive rules that implement the semantics of the

vocabulary terms (e.g., the transitive properties of the subClassOf term). Then,

they proposed a hybrid cost model to estimate the cardinality and evaluation cost

of the predicates that represent the ontologys extensional and intensional facts.

Extensional fact estimates are computed using traditional relational database cost

models. Conversely, to estimate the cost and cardinality of data that do not exist

a priori, which is the case of the intensional facts, sampling techniques are applied.

The cardinality is defined the number of valid instantiations of each predicate. The

size of sample is re-estimated as elements are selected from the data.

Besides, Harth et al. proposed a data structure - Data Summaries (DS) - that

aims to improve the efficiency of Linked Data query processing [30]. In order to

deal with a large number of sources, DS uses a combined description of instance-

and schema-level elements to summarise the content of data sources. It uses a
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summarising index - a data summary - which represents an approximation of the

whole data set. Compared to the schema-level indexes, the DS approach uses more

resources, however, adds the ability to cover also query patterns including instance-

level queries. Since the DS returns sources which possibly contain answers to a

query directly (i.e., taking joins into account), this approach may be viewed as

subsuming both direct lookups and schema-level indexes. Further, a data summary

index can be updated incrementally as the query processor obtains new or updated

information about sources.

2.4 Information Integration

For many years, distributed database researchers [21] have considered the problems

of querying multiple databases and semantic heterogeneity [57]. The problem of

information integration has been widely researched. There are two main approaches

in information integration that relates sources to a query. The first approach known

as Global-as-View (GAV), expresses the global schema relations as a set of views

over the data source relations [14]. The second approach known as Local-as-View

(LAV) expresses the source relations as views over the mediated schema [41]. In the

following, I will first introduce GAV and LAV. Then, I will describe the meta-search

engine. Finally, I will discuss ontology-related information integration.

2.4.1 GAV

As shown in Figure 2.3, in GAV approach, each concept r(X̄) of the global schema

is modeled to be a set of views over the data sources (S1, ..., Sn). In this way, query
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Figure 2.3: Global-As-View

processing is conceptually simpler, because it amounts to replacing (or unfolding)

each global concept in the user query with the associated views over the sources and

then executing the unfolded query over the sources. However, the approach does not

cope well with dynamicity and changes in the sources, since such changes potentially

affect all mappings and require restructuring the global view. This makes GAV a

good choice when the sources are less likely to change.

Formally, GAV source descriptions have the form: S1(X̄1, Ȳ1) ∧ ... ∧ Sj(X̄j, Ȳj)

⇒ r(X̄), where Si are source relations, r is a mediated schema relation, X̄i stands

for the distinguished variables, Ȳi stands for the non-distinguished variables and X̄

=
∪

i X̄i. Here, the distinguished variables are bound variables whose values would

be the answers to the query. The non-distinguished variables are free variables that

only specify places where the substitution may take place. They only appear in the

body of the mapping formulas.
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The GAV query processing is to translate the user queries under the control of

GAV mappings. This translation process is called view unfolding (unnesting). It

can be described by the following example.

Assume we have three GAV mapping rules:

• DB1(id, title, actor, year)⇒MovieActor(title, actor).

• DB2(id, title, cirector, year)⇒MovieActor(title, director).

• DB1(id, title, actor, year) ∧DB3(id, review)⇒MovieReview(title, review).

We also have one query “find reviews for ‘DeNiro’ movies” could be formalized

(in respect to the global schema) as follows:

• q(title, review)⇐MovieActor(title, ‘DeNiro’),MoviewReview(title, review).

Because in GAV we have views for each schema entity, the query is processed

by means of view unfolding, i.e., by expanding the atoms according to their def-

initions. For the above example, the subgoals MovieActor(title, ‘DeNiro’) and

MoviewReview(title, review) will be matched with the heads of the given three

GAV mapping rules. Here, the first and the third rule are selected. Then, replace

the subgoals with the selected mapping rules. At the same time, apply any substi-

tutions into the rules for unification. Here, the used substitution is “actor/DeNiro”.

Then, we can get the following results:

• DB1(id, title, ‘DeNiro’, year)⇒MovieActor(title, ‘DeNiro’).

• DB1(id, title, ‘DeNiro’, year)∧DB3(id, review)⇒MovieReview(title, review).
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After removing the redundant terms, the query reformulation result is:

• DB1(id, title, ‘DeNiro’, year) ∧DB3(id, review)⇒ q′(title, review).

In GAV applications, representative systems are Tsimmis [14], Garlic [13] and

MOMIS [7]. Tsimmis stands for “The Stanford IBM Manager of Multiple Informa-

tion Sources”. It was a DARPA funded joint project of the Stanford database group

and the IBM Almaden database research group. The IBM team later developed

their own information integration project Garlic [13]. Tsimmis creates a hierarchy

of wrappers and mediators that talk to one another. The wrappers are used to

convert data from each source into a common data model called OEM (Object Ex-

change Model). The mediators are used to combine and integrate data exported by

wrappers or by other mediators. In this framework, the global schema is essentially

constituted by the set of OEM objects exported by wrappers and mediators. Me-

diators are defined by using a logical language called MSL (Mediator Specification

Language), which is essentially Datalog extended to support OEM objects. OEM is

a semistructured and self-describing data mode. Each OEM object has associated

a label, a type for the value of the object and a value. Users’ queries are posed in

terms of objects synthesized at a mediator or directly exported by a wrapper.

The Garlic project, developed at IBM’s Almaden Research Center, provides the

user with an integrated data perspective by means of an architecture comprising a

middleware layer for query processing and data access software called Query Services

& RunTime System. The middleware layer presents an object-oriented data model

based on the ODMG standard that allows data from various information sources to

be represented uniformly. In such a case the global schema is simply constituted

by the union of local schemas, and no integrity constraints are defined over the
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OMDG objects. The objects are exported by the wrappers using the Garlic Data

Language (GDL), which is based on the standard object Definition Language (ODL).

Each wrapper describes data at a certain source in the OMDG format and gives

descriptions of source capabilities to answer queries in terms of the query plans it

supports. Note that the notion of mediator in Tsimmis is missing in Garlic, and

most of the mediator tasks, as the integration of objects from different sources, are

submitted to the wrappers. Users pose queries in terms of the objects of the global

schema in an object-oriented query language which is an object-extended dialect of

SQL.

The MOMIS system, jointly developed at the University of Milano and the Uni-

versity of Modena and Reggio Emilia, provides semi-automatic techniques for the

extraction and the representation of properties holding in a single source schema, or

between different source schemas, and for schema clustering and integration, to iden-

tify candidates to integration and synthesize candidates into an integrated global

schema. The relationships are both intensional and extensional, either defined or

automatically inferred by the system. In MOMIS, mediators are composed of two

modules:

• The Global Schema Builder, which constructs the global schema by integrat-

ing the source descriptions provided by the wrappers, and by exploiting the

intraschema and the interschema relationships.

• The Query Manager, which performs query processing and optimization. The

Query Manager exploits extensional relationships to first identify all sources

whose data are needed to answer a user’s query posed over the global schema.

Then it reformulates the original query into queries to the single sources, sends
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Figure 2.4: Local-As-View

the obtained sub-queries to the wrappers, which execute them and report the

results to the Query Manager. Finally, the Query Manager combines the

singled results to provide the answer to the original query.

2.4.2 LAV

As shown in Figure 2.4, in LAV approach, the source relations s(X̄) are modeled

as a set of views over an underlying global schema (R1, ..., Rn). The advantage of

this model is that new sources can be added easily when compared to GAV. For

example, a shopping agent is a good candidate for an LAV approach. However the

query rewriting process is complex because the system has to choose from a set of

choices to determine the best possible rewrite.

Formally, LAV source descriptions have the form: s(X̄) ⇒ R1(X̄1, Ȳ1) ∧ ... ∧

Rj(X̄j, Ȳj), where s is a source relation, Ri are mediated schema relations, X̄i stands
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for the distinguished variables, Ȳi stands for the non-distinguished variables and X̄

=
∪

i X̄i. Here, the definitions of distinguished and non-distinguished variables are

the same meaning as that in section 2.4.1.

The LAV query processing is to translate the user queries under the control of

LAV mappings. Still use the Movie example. Assume we have the following LAV

mapping rules:

• DB1(title, year, director)⇒Movie(title, year, director, genre) ∧ American

(Director) ∧ year ≥ 1960 ∧ genre = ‘Comedy’.

• DB2(title, review)⇒Movie(title, year, director, genre) ∧ year ≥ 1990

∧MoviewReview(title, review).

We also have one query “find reviews for comedies produced after 1950” could

be formalized (in respect to the global schema) as follows:

• q(title, review) ⇐ Movie(title, year, director, ‘Comedy’) ∧ year ≥ 1950 ∧

MoviewReview(title, review).

Because in LAV both the query and mappings target the global schema, it is

not trivial to determine how to map the query to the local sources. This process is

performed by means of an inference mechanism that re-expresses atoms of the global

schema in terms of atoms of the sources. The final reformulation result should be

as follows:

• q′(title, review)⇐ DB1(title, year, director) ∧DB2(title, review).
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Here, q′ ⊆ q, which means the answers after query reformulation are the subset

of the answers before query reformulation because both source views provide only

partial answers for the original query in our example. Note, the results of this refor-

mulation only provide reviews for comedies after 1990, but no reviews are available

for older comedies. So, this reformulation is the best that the system can do.

In LAV applications, representative systems are Information Manifold [41], Info-

master [20], MiniCon algorithm [60] and SIMS [1]. The Information Manifold system

provides uniform access to a heterogeneous collection of information sources on the

Web. It is based on a mechanism consisting of a world view and some source de-

scriptions. The world view is defined as a collection of virtual relations and classes,

which model the features that are useful for describing and reasoning about the

contents of information sources. In LAV terminology, the world view corresponds

to the global schema. In source descriptions, the contents are first modeled as tu-

ples in one or more relations. Then, these relations are described as queries over

the world-view relations. The relations and its related queries over the world view

essentially correspond to the LAV mapping rules. The core algorithm developed in

the Information Manifold system is the bucket algorithm, which is to reformulate

a user query that is posed on a mediated (virtual) schema into a query that refers

directly to the available data sources. This algorithm proceeds in two steps. In the

first step, the algorithm creates a bucket for each subgoal in q, containing the views

(i.e., data sources) that are relevant to answering the particular subgoal. In the

second step, the algorithm considers query rewritings that are conjunctive queries,

each consisting of one conjunct from every bucket. The source selection process

applies the LAV rules. This process can be formalized as follows:
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Given a user query q and some source descriptions {Si|1 ≤ i ≤ n}.

• Find relevant sources (fill in the buckets): for each relation g in query q, find

Si where the relation g appearing in its body part. Then, check if constraints

in case of Si and q are satisfiable.

• Consider as candidate rewriting each conjunctive query q′ obtained by com-

bining {Sj} from each bucket and check for containment (q′ ⊆ q). If so, the

candidate rewriting is added to the answer.

• If the candidate rewriting is not contained in q, before discarding it, the algo-

rithm checks if it can be modified by adding comparison predicates in such a

way that it is contained in q.

The advantages of the bucket algorithm include:

• It takes into account context to prune search space.

• It takes advantage of materialized views to reformulate queries.

However, it still has some limitations:

• It uses Cartesian product of the buckets to find rewritings. Thus, it cannot

scales very well if there are many buckets or many views per bucket.

• It is hard to recover projected away attributes without additional knowledge.

• It considers each sub-goal in isolation during reformulation. Therefore, it

misses some important interactions between view subgoals.
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Informaster is an information integration system that provides integrated access

to distributed and heterogeneous information sources. It is based on an architecture

that consists of wrappers and facilitators. The wrappers convert data from each

source into a common schema that resides in the facilitator. The facilitator mainly

maintains the world relations that are used to describe the information sources.

During the conversion, the LAV mapping rules would be generated. Here, the

schema in the facilitator essentially plays the role of the global schema in LAV. The

core algorithm of Infomaster is the inverse-rules algorithm, which is to construct a

set of rules that invert the view definitions, i.e., rules that show how to compute

tuples for the database relations from tuples of the views, and provides the system

with an inverse mapping which establishes how to obtain the data of the global

concepts from the data of sources. The basic idea is to replace existential variables

in the body of each view definition by Skolem functions. In this way, the rewriting of

a query Q using the set of views V is the logic program that includes the inverse rules

for V , and the query Q. Finally, the inverse-rules algorithm returns the maximally

contained rewriting of Q using V. The whole process is as follows:

• Construct an equivalent logic program whose evaluation yields the answer

to the query by using two steps: rewrite the antecedent of the query and

views in terms of global predicates by using the definition of the associated

predicates, and reformulate the global predicates in the antecedent with the

source predicates by using LAV mapping rules.

• Invert the rules simply by using standard logical manipulations.

• Use the selected source predicates in the obtained query rewritings to solve
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the query.

The advantages of the inverse-rules algorithm include:

• It has conceptual simplicity and good modularity.

• It can return maximally contained rewriting of query using views.

• It scales better than the bucket algorithm.

One typical disadvantage of this algorithm is that it needs additional constant

propagation to trim redundant computations.

The MiniCon algorithm combines the ideas from the bucket algorithm and in-

verse rules algorithm. It identifies a minimal subset of views that is required to

answer a query. In the process, this algorithm creates a MiniCon (Minimal Con-

struction) description for each set of query subgoals that cover a view. It works as

follows:

• Begin like the Bucket Algorithm.

• Form the MiniCon Descriptors (MCD-s): for each subgoal g in the query Q

mapped to subgoal g′ in view V (bucket), look at the variables in Q and

consider the join predicates to find the minimal set of subgoals in Q that must

be mapped to the subgoals in V in order to make V usable.

• Combine MCD-s. This step proceeds as in the bucket algorithm but considers

rewritings involving only the disjoined subgoals of the query because the join

relations have been processed in last step.

51



www.manaraa.com

CHAPTER 2. BACKGROUND AND RELATED WORK

Compared to the bucket algorithm and the inverse-rules algorithm, the MiniCon

algorithm has the following advantages:

• It scales best with the number of available views.

• It requires less work during the combination.

• Its speed performance is improved because there is no containment check op-

eration in combining phase.

However, the main disadvantage of MiniCon is the computation of MiniCon

Descriptors for each goal mapping. In this step, it requires more preprocessing to

build these Descriptors.

SIMS is a flexible and efficient information mediator that takes a domain-level

query and dynamically selects the appropriate information sources based on their

content and availability. The SIMS model of the application domain includes a

hierarchical terminological knowledge base with nodes representing objects, actions,

and states. An independent model of each information source must be described for

this system by relating the objects of each source to the global domain model. The

relationships clarify the semantics of the source objects and help to find semantically

corresponding objects. Here, these relationships are basically LAV mapping rules.

2.4.3 Meta-search Engine

A meta-search engine is a system that provides unified access to multiple existing

search engines. A meta-search engine does not maintain its own index of documents.

However, a sophisticated meta-search engine may maintain information about the

52



www.manaraa.com

2.4. INFORMATION INTEGRATION

 

Global Interface 

Search Engine 1 Search Engine 2 Search Engine n …… 

Figure 2.5: A simple meta-search architecture

contents of its underlying search engines to provide better service. In a nutshell,

when a meta-search engine receives a user query, it first passes the query (with nec-

essary reformatting) to the appropriate underlying search engines, and then collects

and reorganizes the results received from them. A simple two-level architecture of

a meta-search engine is depicted in Figure 2.5. This two-level architecture can be

generalized to a hierarchy of more than two levels when the number of underlying

search engines becomes large [83].

One core issue related to this dissertation that the meta-search engine aims to

tackle is the document selection, which means to determine what documents to

retrieve. A naive approach is to let each selected component search engine return

all documents that are retrieved from the search engine. The problem with this

approach is that too many documents may be retrieved from the component systems

unnecessarily. As a result, this approach will not only lead to higher communication

cost but also require more effort from the result merger to identify the best matched

documents. Thus, the following four categories of approaches were proposed.

• User determination: the meta-search engine lets the global user determine how
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many documents to retrieve from each component system. One representative

system to this approach is called Savvy Search proposed by Dreilinger and

Howe [19]. In this system, the maximum number of documents to be returned

from each component system can be customized by the user. Different numbers

can be used for different queries. If a user does not select a number, then a

query-independent default number set by the meta-search engine will be used.

This approach may be reasonable if the number of component systems is small

and the user is reasonably familiar with all of them.

• Weighted allocation: the number of documents to retrieve from a component

system depends on the ranking score (or the rank) of the component system

relative to the ranking scores (or ranks) of other component systems. As a

result, proportionally more documents are retrieved from component systems

that are ranked higher or have higher ranking scores.

In D-WISE [84], the ranking score information is used. For a given query q,

let ri be the ranking score of component system Di, i = 1, . . . , N , where N

is the number of selected component systems for the query. Suppose m docu-

ments across all selected component systems are desired. Then the number of

documents to retrieve from the system Di is
m×ri∑n
j=1 rj

.

• Learning-based approaches: these approaches determine the number of docu-

ments to retrieve from a component system based on past retrieval experiences

with the component system. One representative work called QC (Query Clus-

tering) performs document selection based on past retrieval experiences. It

utilizes a set of training queries. In the training phase, for each component
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system, the training queries are grouped into a number of clusters. Two queries

are placed in the same cluster if the number of common documents retrieved

by the two queries is large. Next, the centroid of each query cluster is com-

puted by averaging the vectors of the queries in the cluster. Furthermore, for

each component system, a weight is computed for each cluster based on the

average number of relevant documents among the top T retrieved documents

(T = 8 performed well as reported in [76]) for each query in the query clus-

ter. For a given system, the weight of a cluster indicates how well the system

responds to queries in the cluster. When a user query is received, for each

component system, the query cluster whose centroid is most similar to the

query is selected. Then the weights associated with all selected query clusters

across all systems are used to determine the number of documents to retrieve

from each system.

• Guaranteed retrieval: this type of approach aims at guaranteeing the retrieval

of all potentially useful documents with respect to any given query. Many ap-

plications, especially those in medical and legal fields, often desire to retrieve

all documents (cases) that are similar to a given query (case). For these appli-

cations, the guaranteed retrieval approaches that can minimize the retrieval

of useless documents would be appropriate. One representative work is called

query modification [51]. According to this method, under certain conditions, a

global query can be modified before it is submitted to a component system to

yield the global similarities for returned documents. This method is essentially

a query translation method for vector queries. Clearly, if a component system
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can be tricked into returning documents in descending order of global similar-

ities, guaranteeing the retrieval of globally most similar documents becomes

trivial.

2.4.4 Ontology-related Information Integration

T. Tran et al. proposed Hermes, which translates a keyword query provided by the

user into a federated query and then decomposes this into separate SPARQL queries

that are issued to web data sources [77]. During this process, a number of indexes

are used, including a keyword index, a structure index and a mapping index. The

keyword index is constructed by extracting the labels of data graph elements. During

this process, a standard lexical analysis including stemming, removal of stopwords

and term expansion using Lexical Resources (e.g. WordNet) is performed. The

structure index is constructed by extracting the available schema information of

the given data graph. If no schema information is available, the summarization

techniques is applied to construct a schema graph. The mapping index is to store

the mapping relations between different elements discovered at both the data-level

and schema-level. Hermes uses these mappings to integrate publicly available data

sources. Given a query consisting of a set of keywords, Hermes first translates the

query into a set of terms using the keyword index. The structure index is employed

to contruct query graphs based on the output of the keyword index. Then, the

selected queries are decomposed into parts that can be answered using a particular

data source. Finally, the results retrieved for each query are combined as the final

answers to the original query. However, the most significant drawback to Hermes

is that it does not account for rich schema heterogeneity (mappings are basically of
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the subclass/equivalent class variety).

Cosmin B. and Abraham B. proposed a system called Avalanche for querying the

data of the Semantic Web [6]. According to this approach, first, some participating

hosts that can potentially answer the given query are identified via means of a

Search Engine or Web directory. A lightweight endpoint-schema inverted index

can also be used in this step. Then, during the query execution, the given query

is broken into the superset of all molecules, where a molecule is a subgraph of the

overall query graph. A combination of minimally overlapping molecules covering the

directed query graph is identified and all molecules in this combination are bound

to physical hosts determined in the first step. In this process, an objective function

considering the number of molecules, the network latency, etc. is employed to direct

the generation of an optimal query execution plan to anwer the original query.

After this step, the selected query plans are executed and the results are finally

materialized to make the final solutions for the given query. However, Avalanche

does not consider the ontology heterogeneity and ontology integration.

Gunter L. and T. Tran presented a query processing strategy for linked data on

the Semantic Web [39]. This strategy employs a mixed strategy of a bottom-up

approach that discovers new sources during query preprocessing and a top-down

strategy that relies on complete knowledge about the sources to select and pro-

cess relevant sources. According to this strategy, depending on available source

descriptions, an optimal query plan considering triple pattern cardinality, join pat-

tern cardinality, histograms, etc. is first constructed during query compilation. For

evluating the query according to the query plan, each operator is run in a separate

thread. A source monitor is also run in an individual thread to receive new sources
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discovered in the query evaluation. Then, the source retriever requests data from

the new sources at once, which is accomplished by running more than one source

retrieval threads. When maximum discovery distance, maximum number of sources

to load or number of results to produce is achieved, the query processing is termi-

nated. However, this approach does not consider the ontology heterogeneity in the

ontology integration. In addition, its completeness is very hard to measure due to

the unpredictable nature of linked data access.

Schwarte A. et al. proposed a distributed query processing mechanism called

FedX for the data of the Semantic Web [69]. According to this approach, first, a

global query is formulated against a federation of data sources. Then, the global

query is parsed and optimized for the distributed setting. In particular it is split

into local subqueries that can be answered by the individual data sources. Re-

sults of these local queries are merged in the federator and finally returned in an

aggregated form. During the query processing, optimization strategies such as join

order optimization and subquery grouping are applied in order to improve the query

answering performance. However, this work does not have a clear relevant source

selection strategy and also not consider the ontology heterogeneity and ontology

integration.

Peer-to-peer (P2P) semantic web systems like Bibster [26] and SomeWhere [65]

address the distributed nature of the Web, but each is insufficient to address the

problem described in this dissertation. Peers in Bibster might have different data,

but use the same ontologies. Peers in SomeWhere can have different ontologies,

but the data consists only of category information (from an RDF point of view,

this means all triples use the rdf:type predicate). While this is useful for sharing
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bookmarks, it is not very useful for query answering. Liarou et al. use Distributed

Hash Tables (DHT) to provide answers to continuous, conjunctive queries issued to

a network of nodes with RDF data [48]. However, like Bibster, they do not address

the schema mapping issue and therefore only work in a single ontology environment.

DRAGO focuses on a distributed reasoning based on the P2P-like architecture [70].

In DRAGO, every peer maintains a set of ontologies and the semantic mapping be-

tween its local ontologies and remote ontologies located in other peers. The semantic

mapping supported in DRAGO is only the subsumption relationship between two

atomic concepts and ABox reasoning is not supported. KAONP2P also suggests

a P2P-like architecture for query answering over distributed ontologies by creating

semantic mappings among different ontologies [27]. In KAONP2P, the query eval-

uation is performed against a virtual ontology including a target ontology to which

the query is issued and the semantic mapping between the target and the other

ontologies. However, all of these P2P systems have a drawback in that each node

must install system specific P2P software, presenting a barrier to adoption.

Other representative work include: Stuckenschmidt et al. presented an archi-

tecture for querying distributed RDF repositories by extending the Sesame system,

and proposed an index structure as well as algorithms for query processing and op-

timization in a distributed context [75]. They used a hierarchy of path indexes that

indicate which sources have information on which query paths. A major drawback

of this work is that it does not consider schema heterogeneity. Haase and Motik de-

veloped a mapping system for OWL that involves relating conjunctive queries [25].

However, since this effectively adds rules to OWL, it is undecidable as they need

to introduce restrictions to achieve decidability. They do not explicitly address the
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issue of distributed data, and provide no means of indexing the relevant sources.

In addition, a number of researchers are developing modular description logics [9]

[23] [5]. These logics attempt to define the semantics of connecting different ontolo-

gies while preserving their context. Such work typically defines a local interpretation

for each ontology and, for each pair of ontologies, a binary relation between their

domains. Although such logics often provide useful features, such as preventing local

inconsistencies from polluting the global interpretation, no information integration

algorithms that work at web scale have been designed for them.

Finally, I conclude this section with a detail discussion of Abir Qasem et al.’s

work [62] [63], which opened a precursor way for my dissertation. The main prob-

lem they tried to solve is also query answering over Semantic Web data. In order

to achieve this goal, they defined an approach that relies on a form of summary

information called Relevance statements, which is also an indexing scheme to index

Semantic Web data. Relevance statements are influenced by the GAV and LAV

models as introduced in sections 2.4.1 and 2.4.2. They defined a language OWLII,

which is a subset of OWL that is compatible with GAV and LAV. This language is

slightly more expressive than DHL [24]. OWLII is defined below.

Definition 1. The syntax of OWLII consists of DL axioms of the forms C ⊑ D,

A ≡ B, P ⊑ D, P ≡ Q, P ≡ Q−, where C is an La class, D is an Lc class, A, B

are Lac classes and P , Q are properties. Lac, La and Lc are defined as:

• Lac is a DL language where A is an atomic class and i is an individual. If

C and D are classes and R is a property, then C ⊓ D, ∃R.C and ∃R.{i} are also

classes.

• La includes all classes in Lac. Also, if C and D are classes then C ⊔D is also
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a class.

• Lc includes all classes in Lac. Also, if C and D are classes then ∀R.C is also

a class.

Then, they defined two algorithms that given ontologies in OWLII, OWLII rel-

evance statements, and a conjunctive query, would determine the set of potentially

relevant sources, which are loaded into a knowledge base system to obtain sound and

complete answers to the query. In identifying all relevant sources, the algorithms

reformulate the query based on the mapping ontologies.

Their first source selection algorithm was heavily influenced by the PDMS algo-

rithm [28], which was designed to integrate peers who are related by LAV and GAV

rules. Unlike traditional work in information integration, the PDMS approach does

not assume a global mediated schema, and thus it is a better fit for the Semantic

Web. Essentially, the PDMS algorithm creates an AND/OR graph by expanding

subgoal nodes based on matches with LAV and GAV mapping rules. In order to

guarantee termination when there are cycles in the rules, the algorithm does not

expand nodes that have ancestors with the same content (since this will just repeat

the subtree created at the ancestor node). When there are no more nodes to expand,

a set of queries can be read off the tree by taking every option under an AND node

and replicating for each possible OR node. Their source selection algorithm builds

the same tree, but instead of constructing a set of queries, it uses the leaf nodes to

decide which sources are relevant. Additionally, the algorithm performs some ex-

pansions based on axioms from the domain ontologies. The entire content of these

sources is then loaded into a DL reasoner which then answers the original query.

An interesting benefit of this approach is that if all map ontologies are expressed
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in OWLII and the reasoner is sound and complete for OWLII, then it is sound and

complete. This is because the subtrees that are eliminated in order to avoid cycles

will not identify any new sources - the nodes in these subtrees are identical to nodes

elsewhere in the tree [62].

Their second source selection algorithm, dubbed Goal Node Search (OBII-GNS),

was a result of the observation that much of the overhead of the AND/OR graph

source selection algorithm was only needed when you were trying to create a set of

query rewrites [63]. They found that they could simplify the problem by keeping

the LAV/GAV expansion rules but instead of creating children in a tree, then they

simply created new nodes for an open list. They also maintained a closed-list of

nodes that were already expanded, to avoid repeating work (and performed a job

similar to the cycle-check in the and/or graph). This algorithm also allowed domain

ontologies to be expressed in OWLII and expanded their axioms in the same way

as those of the mapping ontologies.

As demonstrated by their empirical experiments, their algorithms have gained

decent performance. However, the algorithms suffer from the following drawbacks:

• The indexing scheme requires users (or a third party) to create content sum-

mary files. This seems like an unnecessary burden that lessens the likelihood

that the approach will be adopted.

• The algorithms frequently select sources that do not contribute to the even-

tual results. This is partially due to the nature of these content summary

files. For example, it would be reasonable to expect that all individual pro-

fessors will specifiy that their RDF files have relevance information on courses

they teach (∃teaches−1.{prof−uri}). This can be very selective for queries
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such as “teaches(prof−uri, ?x)”. However, if on the other hand the query is

‘‘teaches(?x, prog-lang)” then the system will simply have to select the RDF

files of all professors. Note, of course each professor could have a separate

statement for each course, (∃teaches.{prog−lang}, ∃teaches.{AI}, etc.) but

then this wouldn’t be much of a summary. The index would repeat most of the

document’s original content. This brings up another problem: the RDF for

most people includes a large number of single valued properties. While, based

on my real world Semantic Web data statistics using Sindice by surveying

1,000 RDF data sources, the average percentage of such properties is 17.8%.

Therefore, summaries of the properties do not result in much compression of

the document.

• This approach is incomplete in the presence of coreference information, that

is, information about which URIs denote the same objects. In OWL, coref-

erence can by explicitly specified by means of owl:sameAs. It should be

noted the Linking Open Data initiative has over four billion RDF triples and

over 100 million explicit owl:sameAs statements. Many RDF users publish

owl:sameAs statements with their own data to provide the means of gluing

together their descriptions with those made by others. When reformulating a

query, coreference information should be used to expand any constants that

appear, and it should also be used when matching subgoals with sources. For

example, the subgoal author(X, jhendler) should match with a content sum-

mary author (X, jim-hender), assuming we know jhendler = jim-hendler.

However, note that this is not sufficient to guarantee complete answers. For ex-

ample, consider the query acadDescend(minsky, x)∧author(x, p). There is no
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guarantee that sources with information about academic descendants of Min-

sky use the same identifiers as sources about authors of publications. In fact,

this query should be viewed as acadDescend(minsky, x)∧author(y, p)∧x = y,

where x = y is another subgoal essential to solving the problem.

• The approach is only sound and complete for a subset of OWL.
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Problem Definition

This chapter primarily presents how I formally frame, decompose and define my

research problem. It introduces three aspects: a theoretical foundation framework,

a problem decomposition and an inverted index to integrate Semantic Web data. In

Section 3.1, I theoretically characterize my problem space which deals with seman-

tic web data (ontologies and data sources that commit to them) and extensional

(i.e. fact/data related) queries. This theoretical framework formally provides the

conceptual foundation of my source selection algorithm(s) that I will describe later

in this dissertation. In Section 3.2, I present my research problem decomposed into

several components and further elaborate each one of them. Finally, in Section 3.3,

I give a detail introduction to my IR inspired indexing scheme for RDF data.

3.1 Problem Space

In this dissertation, I am interested in query answering over the Semantic Web. It

is well known that Semantic Web consists of a collection of web documents that
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describe several OWL ontologies [73]. For convenience of analysis, in this disserta-

tion, I decided to follow a more traditional approach and separate ontologies (i.e.

the class/property definitions and axioms that relate them) and data sources (asser-

tions of class membership or property values). As mentioned in Sections 2.1.4 and

2.1.5, since OWL is based on DL, these ontologies are essentially DL ontologies. In

the discussion that follows, I use L to refer to a subset of OWL DL, C to refer to the

set of all classes, P to refer to the set of all properties, At to refer to the set of all

terminological axioms of L, Aa to refer to the set of all assertional axioms of L, D

to refer to the set of all individuals, and U to refer to the set of document identifiers

(URLs in the case of OWL) in the Semantic Web.

Definition 2 (Ontology). An ontology is a set of At.

Definition 3 (Data Source). A data source is a set of Aa.

Now, I introduce two functions. An ontology function o that maps the set of

document identifiers U to the set of all ontologies and a source function s that maps

U to the set of all data sources. If some u ∈ U is a data source then o(u) is an

empty set and similarly if some u ∈ U is an ontology then s(u) is an empty set.

Definition 4. (Semantic Web Space) A Semantic Web Space SWS is a tuple ⟨U , o, s⟩,

where U refers to the set of document identifiers, o refers to an ontology function

that maps U to a set of ontologies and s refers to a source function that maps U to

a set of data sources.

Given a semantic web space SWS, I assume that there are two types of on-

tologies: mapping ontologies and domain ontologies. The mapping ontologies use

logical axioms to describe the relationships between terms in heterogeneous domain
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ontologies. I do not assume that there are mappings between all pairs of ontolo-

gies - instead I leave it to an algorithm to compose chains of mappings to discover

mappings between ontologies. I will apply the OWLII language - a subset of OWL

DL (Description Logics), as mentioned in Section 2.4.4, to express the mapping and

domain ontologies [62].

A knowledge base K satisfies a set of logical sentences α iff each logical sentence

Lα in α is true when each variable in Lα is assigned a member value of K. I define

the satisfaction of o(u), s(u) per the official OWL semantics document [59].

Definition 5 (Satisfaction). An interpretation I satisfies a Semantic Web Space

⟨U , o, s⟩, iff for each u ∈ U , I satisfies o(u) and s(u).

A knowledge base entails (written |=) a set of logical sentences α iff every inter-

pretation that satisfies the knowledge base also satisfies α. The notion of entailment

of a SWS is defined as follows.

Definition 6 (Semantic Web Space Entailment). Given a set of description logic

sentences α, SWS |= α iff every interpretation that satisfies SWS also satisfies α.

DL as a query language is more suitable for posing queries on TBox. In addition

to satisfiablity and consistency checking of an ABox, the only other ABox inference

available via basic DL mechanism is instance retrieval. The instance retrieval prob-

lem is as follows: given a DL Abox and a concept C find all individuals a such that

Abox |= C(a). Basically, DL query facility does not allow us to ask questions about

roles, which arguably is more significant for practical data intensive applications

than instance retrieval (a telephone number of a certain person as opposed to all

the telephone numbers in a knowledge base).
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To address this shortcoming of DL based ABox queries, Horrocks et al. [32] have

proposed the use of conjunctive queries over DL knowledge bases. A conjunctive

query is a rule whose subgoals are always extensional predicates (i.e. predicates

that are actually available in a knowledge base as opposed to intensional predicates

that define relationships between predicates). If a substitution of the values for the

variables in the subgoals makes all the subgoals true, then the same substitution

applied to the head is an inferred fact about the head’s predicate i.e. an answer

to the conjunctive query. The problem of finding all the answers to a conjunctive

query (given a set of views) is customarily formalized using the notion of certain

answers. Intuitively, a tuple t is a certain answer to a query if t is an answer for

any of the possible database extensions that are consistent with the given extension

of views.

It is well-known that the problem of computing certain answers and deciding

query entailment can be reduced to each other and the complexity results do carry

over [32, 12]. This was the basis for Horrocks et al.s’ proposal introducing conjunc-

tive queries over DL knowledge base. In my work I adopt this approach.

Definition 7 (Conjunctive Query Form). A conjunctive query has the form Q
(
X
)
:-

B1

(
X1

)
, . . . , Bn

(
Xn

)
where X is a vector of variables and/or individuals and each

Bi is a query triple pattern representing a concept or role term respectively.

Furthermore, this above defined conjunctive query corresponds to the most com-

mon SPARQL queries. Within SPARQL, each Bi

(
X i

)
is called a query triple pat-

tern (QTP) that is like an RDF triple, but with the option of a variable in place of

RDF terms (i.e., URIs, URLs, literals or blank nodes) in the subject, predicate or

object positions. I define the QTP as follows:
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Definition 8 (Query Triple Pattern). A query triple pattern is in the form of

⟨s, p, o⟩, which is the member of the set {(RDF-T ∪ V) × (R ∪ V) × (RDF-T

∪ V)}, where RDF-T is the set of RDF terms including all RDF Literals, IRIs and

blank nodes, R is the set of all IRIs and V is the set of query variables.

Within Definition 7, I refer to the left hand side of :- as the head of the query

and the right hand side as the body of the query. The variables that appear in the

head are called distinguished variables and describe the form of a query’s answers.

They are universally quantified and must appear also in the body (otherwise we end

up with “undefined” variables in head). All other variables in the query are called

non-distinguished variables and are existentially quantified.

I now restrict the membership of X in Q. This restriction needs to be im-

posed to ensure the so called DL-safety of rules introduced by Motik and Sat-

tler [52]. According to this restriction all variables in X of Q should be mapped

to individuals explicitly introduced in the data sources. Without this restriction,

conjunctive query answering becomes undecidable over DL knowledge base. This

is due to the possibility of non terminating reasoning process as a result of in-

teractions between DL constructs and rules. Existential restrictions in DL cre-

ate the possibility of infinite chains of inference when such DL axioms are trans-

lated in to a set of rules. Consider a DL knowledge base that contains the axioms

{Person(Allison), P erson ⊑ ∃father.Person}. Since Allison must have a father,

there is some x1 who is a Person. In turn x1 must have some father x2, who must

be a Person, and infinitum.

A substitution θ is a finite set of pairs {x1/t1 . . . xn/tn} where xi are distinct

variables and ti are arbitrary terms. If θ is substitution and ρ is a literal, then ρθ is
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the literal that results from simultaneously replacing each xi in ρ by ti. For a given

query Q and substitution θ, we use Qθ as a shorthand for B1θ ∧ B2θ . . .∧ Bnθ.

Definition 9 (Answer Set). Given a Semantic Web Space SWS, an answer set

Ans SWS(Q) to a query Q is the set of all substitutions θ for all distinguished

variables in Q such that: SWS |= Qθ.

The goal of this dissertation is to design a system that given only a conjunctive

query q, the function o and some form of summary information for s, can identify a

set R ⊆ U of data sources such that
∪

u∈U o(u)∪
∪

u∈R s(u) entails the same answers

for q as does the full Semantic Web Space. Note, this selection must be done without

complete knowledge of s. The assumption is that there are a large number of data

sources - too many for it to be feasible to query every data source directly - and thus

we need to identify a subset of sources that are potentially relevant to the query.

Ideally, this set should be significantly smaller than the full set of sources, but the

size will depend to some extent on the form of the summary information.

3.2 Problem Decomposition

In order to efficiently solve my problem - federated query answering over Semantic

Web data, I decompose it into five components: Indexer, GUI Convertor, Reformu-

lator, Selector and Query Engine.

In the following part, I use T to stand for the set of indexed terms, U to stand

for the set of document identifiers as defined at Definition 4, P(U) to stand for a

subset of U , QNL to stand for the set of natrual language described queries, QC to

stand for the set of conjunctive queries defined at Definition 7, O = o(U) to stand
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for the set of ontologies as defined at Definition 4, P(O) to stand for a subset of O,

Qsub to stand for the set of set of reformulated subgoals, Assertions to stand for the

set of assertions extracted from P(U) in order to answer QC and A to stand for the

answer set to QC as defined at Definition 9.

• Indexer : it is periodically run to create an inverted index for all of the data

sources and to collect the axioms from domain and mapping ontologies. For-

mally, the Indexer is a function I : T → P(U).

• GUI Convertor : a user query is input via a graphical user interface (GUI) and

converted into a set of conjunctive queries. Formally, the GUI Convertor is a

function GC : QNL → QC .

• Reformulator : it uses the domain and mapping ontologies to reformulate the

conjunctive query into a set of subgoals. Formally, the Reformulator is a

function Re : QC ×P(O)→ Qsub.

• Selector : it takes the query reformulation results of Reformulator as inputs

and uses the inverted index created by Indexer to identify which sources are

potentially relevant to the query. Formally, the Selector is a function S :

Qsub × I → P(U).

• Query Engine (QE): it reads the selected sources from Selector together with

their corresponding ontologies and answers the orginal cnjunctive queries. For-

mally, the QE is a function: QE : QC × P(U)→ A. The QE consists of two

components: Loader and Reasoner.
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– Loader : it takes the selected sources from Selector together with their

corresponding ontologies as inputs and extracts the relevant assertions

from them that are necessary to answer the original queries. Formally,

the Loader is a function Loader : QC × P(U)→ Assertions.

– Reasoner : a sound and complete OWL Reasoner is used to answer the

original conjunctive queries using the extracted assertions from Loader.

Since the selected sources are loaded in their entirety into the reasoner,

any inferences due to a combination of these assertions will also be com-

puted by the reasoner. Formally, the Reasoner is a function Reasoner :

QC × Assertions→ A.

Corresponding to each component, I designed my system as depicted in Figure

3.1. I assume that each data source from the set {S1, ..., Sn} commits to one or

more OWL domain ontologies from the set {O1, ..., On}. Meanwhile, there are some

mapping ontologies from the set {M1, ..., Mn} that use OWL axioms to describe the

mapping relations between a pair of related domain ontologies. The choice of OWL

to articulate the alignments make these mapping axioms shareable via the Web. In

Query Engine, since Loader can directly be implemented using APIs provided by

Reasoner (e.g. KAON2 in this dissertation), I will not explore it in my dissertation.

As mentioned in Section 1.2, I will not address user interface issues belonging to

GUI Convertor, assuming instead that front-ends can translate the user input into

a conjunctive query. As a result, my work will be on Indexer, Reformulator and

Selector, plus the empirical evaluation of my system.
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Figure 3.1: System Architecture with arrows showing the flow of information when
processing a query.
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3.3 IR-Inspired Indexing Scheme - Term Index

A key observation of this dissertation is that RDF documents fall somewhere be-

tween databases and free-text; they are after all semi-structured. RDF documents

are more plentiful than most database solutions to information integration assume,

but currently less plentiful than the number of documents of web-based information

retrieval systems. For this reason, it seems that an IR-inspired approach to index-

ing RDF documents for use by an information integration system could address

problems of automation and scale.

Recall that an RDF document is a set of triples, each with a subject, predicate

and object. The subject and predicate are always URIs, but the object can be a

URI or a literal. A possible lossy representation of the document is a set of URIs

and literals, much in the same way that IR methods view a free-text document as a

bag of words. Formally, let U be the set of URIs and L be the set of Literals, then

an RDF document d ⊆ U×U× (U ∪L). IR systems typically use an inverted index,

where each term is an entry to an index that contains a posting list of documents

that contain the term. To determine the terms for an RDF document, we must

first tokenize the document. All tokens with the same character sequence are called

types. The IR system then contains a dictionary of (possibly normalized) types.

I will use the subjects, predicates, and objects of triples as the tokens. When,

the object is a literal, I will further tokenize this as one would tokenize a free-text

document. Instead, we can tokenize the whole literal as well. However, this way is

lacking the support for string functions such as the substring search, which are often

used in SPARQL queries. Therefore, I chose to tokenize each term contained in the

literal, which will enhance the ability of the index to answer queries that involve
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strings. Thus, the terms of the document can be formally expressed as follows:

terms(d) ≡ {x| < s, p, o >∈ d ∧ [x ≡ s ∨ x ≡ p ∨ (o ∈ U ∧ x ≡ o) ∨ (o ∈ L ∧ x ∈

lit− terms(o))]}.

where ⟨s, p, o⟩ stands for a triple contained in a document d, and lit-terms() is a

function that extracts terms from literals, and may involve typical IR techniques such

as stemming and stopwords. The dictionary of my system is then
∪

d∈Dict terms(d).

Each term in the dictionary has a posting list, which is defined to be a list that

records which documents contains which terms.

With the above idea, I can create an inverted index for the distributed RDF

data. This index is named Term Index, which can be formally defined as follows:

Definition 10. (Term Index) Given a Semantic Web Space ⟨U, o, s⟩, the term index

is a function I : T → P(U) , where T =
∪

d∈U terms(s(d)).

Using the term index, two basic functions (Definitions 11 and 12) are needed to

determine how to select potentially relevant sources for the query answering. Note

that the sources for a query triple pattern (QTP) are basically those sources that

contain each constant (URI or literal term) in this QTP.

Definition 11. (Term Evaluation) Given the set of possible query triple patterns

Q and a set of constant terms T (that appear as subjects, predicates or objects of

any q ∈ Q), the term evaluation function qterms: Q → P(T ) maps QTPs to the

(non-variable) terms that appear in them.

Definition 12. (Source Evaluation) Given the set of possible query triple patterns

Q and a set of document identifiers D, the source evaluation function is qsources:

Q → P(D). Given a QTP q and a term index I, qsources(q) =
∩

c∈qterms(q) I(c).
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ns2:id133, 
ns2:affiliation;
ns1:LEHIGH

triples
RDF 

triples Indexer
Index

ns1:id132, 
ns1:full-name,
"John Smith" 

ns1:id132,
ns2.affiliation,
ns1:UPENN

ns3:id134, 
ns1:full-name,
“John Wong”

ns1:id132 D1

D1 D2 D3

ns1:full-name D1,D3

John D1,D3

Smith D1

ns1:UPENN D1

ns2:id133 D2

ns1:LEHIGH D2

ns2:affiliation D1,D2

Wong D3

ns3: id134 D3

Figure 3.2: A Term Index example

An example of the term index is shown in Figure 3.2. Each token contained in

the given documents D1, D2 and D3 has a posting list of documents that contain it.

Since in the Semantic Web, most of the terms in RDF documents are URIs,

many URIs have the same server name, and within each such set, there may be many

with the same namespace, they should be very amenable to a straight-forward id

compression technique, which identifies common prefixes of URIs and assigns them a

special character in order to reduce the size of the dictionary string and improve the

query efficiency. The id compression is a type of encoding compression algorithm

whereby common prefixes or suffixes and their lengths are recorded so that they

need not be duplicated. As a result, it can be used to compress the lexicons used in

search indexes. This can be verified in Chapter 6.

Till now, we have learned that the term index is a lookup index that indexes
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RDF documents on the Semantic Web and able to tell which documents contain

which terms. Sindice [56], as a well known semantic web search engine, is also a

lookup index that craws and indexes resources on the Semantic Web. Thus, I will

end this section by first giving a brief introduction to Sindice and then making a

comparison between my term index and Sindice.

The purpose of Sindice is to allow applications to automatically retrieve sources

with information about a certain resource. It offers a full-text search and also indexes

SPARQL end points. Sindice regards the Semantic Web as a large collection of RDF

documents. Thus, it indexes all identifiers in URIs and literal words in the graph,

allows lookups over these identifiers and returns pointers to sources that mention

these terms. With respect to inference support, since the relevant inferences come

from OWL vocabulary, Sindice first recursively fetches and imports all the referenced

schemas and then performs the inference computations. During data crawling, to

balance the data ownership problem, Sindice not only employs the traditional “pull”

model of Web crawlers, but a “push” model, which means data providers are offered

a way to notify the indexing service of new data in order to be indexed. Regarding

index construction, to be able to construct and store the index in a scalable manner,

Sindice clusters machines into a parallel architecture with shared storage space,

which allows to address the scarcity of processing power and storage through simple

scaling of commodity hardware.

Compared to Sindice, my term index has the following characteristics:

• Similar to Sindice, my term index also indexes all identifiers in URIs and literal

words in the Semantic Web and allows lookups over these identifiers. However,

it does not return pointers to sources to client users as Sindice does. Instead,
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it returns them to Loader component in Figure 3.1.

• In the inference support, both my term index and Sindice need to first fetch

and preload all the referenced schemas.

• In the data crawling, my term index has not yet considered which crawling

model (“push” or “pull”) should be chosen. However, both models are appli-

cable for the term index if needed.

• In the index construction, my current term index is in a centralized storage

instead of a cluster storage. However, if needed, the term index can also apply

a cluster storage as Sindice does in order to scale.

• In the system goal, my term index is a component in a query answering system

for Semantic Web data. Thus, it does not cover SPARQL end points, which is

actually already a query answering mechanism over some data sources. How-

ever, if we do not consider the index of SPARQL end points in Sindice, Sindice

could play an Indexer role as my term index in my system.

Even though my term index and Sindice have the above similaries, Sindice cannot

be an alternative to my term index in my system because of the following reasons:

• I have more control over my term index than Sindice. Thus, in my dissertation,

I am able to design and implement my query optimization algirithms more

easily and flexibly using my term index.

• In my system, Sindice could be a plugin to play an Indexer role as my term

index does. However, due to Sindice’s web access latency, my term index

performs more effciently than Sindice because of its local disk index accesses.
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Source Selection

In order to retrieve relevant sources using the term index, any given conjunctive

query needs to be converted into Boolean retrieval queries. Consider the mapping

ontologies and domain ontologies, we need to first reformulate the original conjunc-

tive query into a set of subgoals. Since each subgoal has a different number of

sources that could contribute to solving this subgoal, we can use this heuristic to

optimize the query planning. Therefore, this chapter starts with the discussion of

conjunctive query reformulation. Since my query reformulation is based on the well

known Peer Data Management System (PDMS) algorithm [28], I will first give a

brief introduction to PDMS algorithm, in particular its query reformulatoin. Then,

I will present three query optimizatoin algorithms for the source selection: the non-

structure algorithm, the flat-structure algorithm and the tree-structure algorithm.

For each of them, the correctness proof is given. Note, these algorithms do not

consider the case of predicates as variables in queries because in the real world, the

predicates of most queries (e.g. 79.44% in DBpedia and 99.48% in Semantic Web
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Dog Food) are constants [2].

4.1 PDMS

The PDMS is a decentralized and extensible information integration architecture,

in which any user can contribute new data, schema information, or even mappings

between other peers’ schemas. PDMS extends the two most well known information

integration approaches: GAV (Section 2.4.1) and LAV (Section 2.4.2) replacing their

single mediated schema with an interlinked collection of mappings between peers’

individual schemas. Since in the Semantic Web we can and will have queries in any

ontology (schemas), I need a mechanism that does not depend on a single medi-

ated schema. Therefore PDMS’s “any schema” approach meets such requirement.

Hereinafter I refer to the PDMS algorithm simply as the PDMS.

PDMS takes as input a query, a set of views describing the sources and the maps,

and computes a reformulation strictly in terms of the sources. Query answering in

PDMS is polynomial time [28] if certain restrictions are imposed on the maps. If the

maps are cyclic then PDMS becomes undecidable. However, acyclic maps are too

restrictive. For example, equality maps (a common usecase) will always introduce

cycles. Therefore, PDMS allows for equality maps, provided the relation in the head

of a map does not appear in the body of any of other maps.

PDMS constructs a “rule-goal” tree: where goal nodes are labeled with atoms of

the peer relations, and rule nodes are labeled with peer maps. The tree is constructed

by expanding nodes using the maps between schemas. To expand a goal node the

algorithm looks for a match in the maps for the label of that node. When a match
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is found a child rule node is created which is labeled with the matched peer map.

The rule node is then expanded as follows: if the matched peer map is a GAV-style

mapping, a new child goal node is created for each sub goal of the peer map. If the

matched peer map is a LAV-style mapping, child goal nodes are formed using the

MiniCon algorithm [60].

The MiniCon algorithm identifies a minimal subset of views that is required to

answer a query. In the process this algorithm creates a MiniCon (Minimal Con-

struction) description for each set of query sub goals that cover a view. For a given

MiniCon description of a goal node (w.r.t. its siblings and the matched peer map),

the PDMS creates a rule node with the view of the MiniCon description and creates

a child goal node with the head of the view. It also marks in the rule node all of

the other sub goals that are covered by the peer map.

Each goal node is also expanded using the maps relating a data source to a peer.

These maps are essentially LAV-style mappings with the actual stored relations on

the left hand side of an inclusion description. The PDMS algorithm combines and

interleaves the two types of reformulation techniques: one type of reformulation

replaces a subgoal with a set of subgoals, while the other replaces a set of subgoals

with a single sub goal.

The reformulation is a union of conjunctive queries over the stored relations.

Each of these conjunctive queries represents one way of obtaining answers to the

query from the relations stored at peers. Basically the rule goal tree is an AND-OR

tree and the reformulations are all of the AND-OR traversals from root to leaf.

Apply the PDMS query reformulation into a Semantic Web Space, a conjunctive

query is reformulated into a rule-goal tree using a set of GAV and LAV views
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q

Query:
Q(p1, p2) :- SameAffiliation(p1, p2), 

Author(p1, w), Author(p2, w)
Rules:
r0: sameAffiliation (p1, p2):- Affiliation(p1, a), 

Affiliation(p2,a)
r1: writtenBy (w, p)      Author(p, w)
r2: hasPaper(p, w)      Author(p, w) 

Q(p1, p2)

SameAffiliation(p1,p2) Author(p1,w) Author(p2,w)

r0

Affiliation(p1,a) Affiliation(p2,a)

r1

writtenBy(w, p1) hasPaper(p1, w)

r2

r1

writtenBy(w, p2) hasPaper(p2, w)

r2

Figure 4.1: A PDMS-based query reformulation tree example

describing mapping ontologies and domain ontologies. In this tree, goal nodes are

labeled with atoms of predicate, and rule nodes are labeled with ontology axioms

defined in both domain ontologies and mapping ontologies. During the construction

of the rule-goal tree, for each GAV mapping rule, an AND child goal node is created,

and for each LAV mapping rule, an OR child goal node is created.

One query reformulation example is illustrated in Figure 4.1. Begin with the

query Q, which asks for researchers who have worked at the same affiliation and

also coauthored a paper. Q is expanded into three subgoals, each of which appears

as a goal node of one AND rule node q. The SameAffiliation is involved into a

GAV rule r0, hence the reformulation expands the SameAffiliation goal nodes with

the rule node r0, whose children are two goal nodes of Affiliation relations (each

specifying the affiliations that an individual researcher works at).

The Author relation is involved into two LAV rules r1 and r2, hence the refor-

mulation expands Author(p1, w) and Author(p2, w) using two OR rule nodes and
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both have two children goal nodes of writtenBy and hasPaper. As a result, Q is

reformulated into a set of relations/subgoals: {Affiliation, writtenBy, hasPaper}.

4.2 The Non-structure Algorithm

Given a set of query subgoals (corresponding to all goal nodes over the PDMS rule-

goal tree), the non-structure algorithm does an index lookup for each subgoal and

loads all relevant sources into a Reasoner to solve the original query in form of

Boolean query. Each subgoal about class membership is reformulated into a con-

junction of rdf :type and the class. All others involving a predicate p are reformulated

into a conjunction of p and any other constants in the query. For instance, consider

a query with the following reformulated subgoals:

• ⟨x, rdf :type, u:Professor⟩, ⟨x, u:teaches, cs:proglang⟩, ⟨x, j:works-at, y⟩.

It is then translated into the following Boolean query:

• (u:Professor AND rdf :type) OR (u:teaches AND cs:proglang) OR (j:works-

at).

Assuming the index is fresh, the set of documents returned by the term index are

guaranteed to be the only documents that contain matching triples. Note, however,

that some documents might have irrelevant triples. For example, a document with

the triples ⟨a:john, u:teaches, math:calc⟩ and ⟨a:john, u:audits, cs:proglang⟩ will

be returned for the example query. These irrelevant triples will not affect the overall

correctness of the system, since they will not be used in any answers returned by the

Reasoner. The only impact is the additional time to load an irrelevant document.
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I expect that such documents will account for a small fraction of the documents

selected, and that these false positives will be far fewer than the false positives

returned by the original content-summary indexing scheme. Based on my real world

Semantic Web data statistics using Sindice, this expectation can be verified. Over

Sindice, my statistcs was executed by respectively issuing a query using Sindice’s

Boolean query function and Triple pattern query function. For example, the Boolean

query “http://sindice.com/hlisting/0.1/itemName AND ipod” is to retrieve

those documents that contain both terms of “http://sindice.com/hlisting/0.

1/itemName” and “ipod”. On the other hand, the Triple pattern query “⋆ ⟨ http:

//sindice.com/hlisting/0.1/itemName⟩ ‘ipod’ ” is to retrieve those documents

that contain triples taking “http://sindice.com/hlisting/0.1/itemName” as a

predicate and “ipod” as its object value. As a result, the ratio of the irrelevant

documents selected by term index for a given query Q can be calculated as follows:

Irrelevance(Q) =
Num of Res(Boolean(Q))−Num of Res(Triple Pattern(Q))

Num of Res(Boolean(Q))
,

(4.1)

where Boolean(Q) is the Boolean expression of Q and Triple Pattern(Q) is the

Triple pattern expression of Q.

Using the above formula, in my statistics of Table 4.1, I have issued 10 different

queries and averaged their irrelevant document ratio. Finally, I found that the ratio

of irrelevant data sources for a given query is 18.72%.

The non-structure source selection algorithm is described in Algorithm 1 (Fig-

ure 4.2), which is mainly to construct index compatible Boolean queries and then
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Query Terms # of Results # of Results
of Boolean Query of Triple Pattern

Query

http://sindice.com/hlisting/0.1/itemName, 431 314
ipod
http://sindice.com/hlisting/0.1/itemName, 92 63
nano
http://sindice.com/hlisting/0.1/itemName, 31 28
shuffle
http://data.semanticweb.org/person/ 8 5
james-hendler, http://data.semanticweb
.org/ns/swc/ontology#holdsRole

http://xmlns.com/foaf/0.1/name, Jeff Heflin 46 39
http://xmlns.com/foaf/0.1/name, Jim Hendler 2386 103
http://data.semanticweb.org/person/ 14 14
james-hendler, http://swrc.ontoware.
org/ontology#affiliation

http://www.w3.org/1999/02/22-rdf 67,322,318 62,847,724
-syntax-ns#type, http://xmlns.com/
foaf/0.1/Person

http://www.w3.org/2004/02/skos/core#broader, 761 740
http://dbpedia.org/resource/Category

:A-Class_articles

Table 4.1: Statistics of irrelevant data sources
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Algorithm 1 the non-structure source selection 

function getSourceList(RQN: Reformulated Query Nodes)  

       return: a list of sources 

       inputs: RQN, the reformulated query subgoals;   

1:   Let sources = �; 

2:   for each � � ��� do 

3:      if n typeOf ClassMemberShip then 

4:         qterm = “(rdf:type AND”+n.predicate+“)” 

5:      else 

6:         qterm = “(”+n.predicate 

7:         if n.subject typeOf Constant then 

8:            qterm = qterm+“ AND”+n.subject 

9:         if n typeOf owl:ObjectProperty then 

10:           if n.object typeOf Constant then 

11:              qterm = qterm+“ AND”+n.object 

12:       else 

13:           if n typeOf DatatypeProperty then 

14:               lterms = lit-terms(n) 

15:               for each ��	
� � ��	
�� do 

16:                  qterm = qterm+“ AND lterm” 

17:      if !(last_node(n, RQN)) then 

18:        boolean_query.add(qterm, “) OR”) 

19:      else 

20:        boolean_query.add(qterm, “)”) 

21:   sources = index-lookup(INDEX, boolean_query) 

22:   return sources 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: The non-structure algorithm
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identify potentially relevant data sources using these queries. The core function is

the Boolean query construction (Lines 2-20). For each subgoal, the algorithm first

judges whether it is a class membership or not (Line 3). If yes saying ns:Class(x),

the Boolean query is then “ns:Class AND rdf :type” because there is one special

term rdf :type, which does not explicitly appear (Line 4). Otherwise, the Boolean

query is generated using the predicate (Line 6) concatenated with keyword “AND”

and available constants that might appear in either subject (Line 8) or object (Line

11). Note, if the object is a literal, I will extract the terms from the literal using a

function lit-terms() (Line 14) and concatenate each of them using Boolean “AND”

(Line 16). After each subgoal’s process, if it is not the last one, the generated

Boolean query is concatenated using the keyword “OR” with the Boolean queries of

other subgoals (Line 18). Otherwise, the keyword “OR” is not concatenated (Line

20). Finally, the whole Boolean query for the original conjunctive query is issued to

the term index to find relevant sources (Line 21).

Theorem 1. Given a Semantic Web Space SWS and a conjunctive query Q, the

non-structure source selection algorithm is correct in that given a set of simple do-

main ontologies, OWLII map ontologies, and a term index over the data source

documents within SWS, it will identify exactly the potentially relevant sources for

Q.

Proof. I will first prove the soundness, and then the completeness.

• Soundness:

Assume the set of sources collected by the non-structure algorithm is srcs(Q)

and the set of answers to Q entailed by srcs(Q) is Ans. Then we have
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srcs(Q) ⊆ SWS. Thus, we can get ∀θ(θ ∈ Ans ∧ Theory(srcs(Q)) |= Qθ →

Theory(SWS) |= Qθ). Therefore, the non-structure algorithm is sound.

• Completeness:

Assume in the given SWS, C refers to the set of all classes, P refers to the

set of all properties, R refers to the set of all constant URIs, L refers to the

set of all literal terms, V refers to the set of all variables, and T refers to the

set of terms indexed by the term index I.

As shown in [61], the OBII-GNS algorithm is complete. Therefore, the sub-

goals identified by OBII-GNS are complete. Given a subgoal in form of ⟨x, p, y⟩

or ⟨x, rdf :type, c⟩ where p ∈ P , c ∈ C, x/y ∈ R ⊔ V ⊔L and a source function

s, assume a source s(u) has a triple that unifies with ⟨x, p, y⟩ or ⟨x, rdf :type, c⟩

and a function tu = terms(s(u)),where terms(s(u)) is defined to be the set of

terms contained in s(u). One of the following cases has to happen during the

source selection by I:

– No constant constraints: p/c ∈ tu, and s(u) ∈ I(p/c).

– Either x or y is a constant constraint: for x/y, if x/y ∈ R, then x/y ∈ tu,

and s(u) ∈ I((x/y) ∧ (p/c)).

– Either x or y is a literal constraint: if x/y ∈ L, then lit-terms(x/y) ∈ tu,

and s(u) ∈ I(lit-terms(x/y) ∧ (p/c)).

Thus, a query reformulated by Algorithm 1 against I returns any s(u) that is

directly relevant to the given subgoal. As a result, based on the complete set of
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subgoals identified by OBII-GNS, the non-structure source selection algorithm

is complete.

Therefore, the non-structure algorithm is correct.

However, the non-structure algorithm suffers from the following drawbacks:

• Because the term index only indicates if URIs or Literals are present in a

document, specific answers to a subgoal of a given query cannot be calcu-

lated until the sources are physically accessed - an expensive operation given

disk/network latency.

• Furthermore, even if there is no disk/network latency problem, in the real

world, it is also very likely that the number of sources related to a subgoal

could be so large that it is very difficult to load all of them into the reasoner

to solve the queries in the real time. For example, based on the scalabil-

ity evaluation using a real world data set in Section 6.2, given a query of

⟨?x, affiliation, “lehigh-univ”⟩ ∧ ⟨?x, maker, ?y⟩, the number of relevant

sources of the given two subgoals are 5 and 3,485,607 respectively. As a result,

the non-structure algorithm will load 3,485,607 + 5 = 3,485,612 sources in to-

tal to solve this query. From the perspective of Reasoner, it will take around 7

hours to load this number of sources, which is clearly unsuitable for real-time

queries. Also, many sound/complete reasoners do not scale to this size.

• Finally, each query reformulation subgoal is independently counted for the

original query. Therefore, the non-structure algorithm does not consider the
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structure relations among different query subgoals. Consequently, it cannot

scale very well into the real world with large volume of semantic data because

subgoals have different selectivities (Equation 4.2), which can be used to opti-

mize the query answering through the constant constrait propagation among

different subgoals. More details will be introduced in Sections 4.3 and 4.4.

4.3 The Flat-structure Algorithm

In order to overcome the drawbacks of the non-structure algorithm, I need to fig-

ure out some heuristics that can be applied to optimize the query answering. In

this section, I first present my flat-structure algorithm in Section 4.3.1. Then, its

correctness proof is given in Section 4.3.2.

4.3.1 Algorithm Description

Assume we have the following conjunctive query:

• ⟨?p, rdf :type, a:Student⟩∧⟨?p, b:hasPhD, ?s⟩∧⟨?pap, b:has-author, “james-

hendler”⟩ ∧ ⟨?p, b:has-paper, ?pap⟩.

In the real world, it is often difficult to judge the selectivities of the given QTPs

because their selectivities are closely depending on features of the given semantic

web space and QTPs themselves. However, generally speaking, we can still have the

following discussion of the selectivities of the contained QTPs in the example query:

• ⟨?pap, b:has-author, “james-hendler”⟩: this kind of QTPs is generally highly

selective with constant constraints. It is because the constant constraint such
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as “james-hendler” is so specific that the number of sources satisfying it is

so few even if the number of matching triples may be large.

• ⟨?p, b:hasPhD, ?s⟩ and ⟨?p, b:has-paper, ?pap⟩: this kind of QTPs could

be selective or low selective. Their selectivities depend on the selectivities of

the predicates such as b:hasPhD or b:has-paper within the given semantic

web space. For instance, if the given semantic web space is to describe the

domain of general persons, the given QTPs are selective because the given

predicates are relatively unique features of a person. On the other hand, if

the given semantic web space is about all universities and their faculties and

students, the given QTPs are low selective because the given predicates are

not relatively unique attributes.

• ⟨?p, rdf :type, a:Student⟩: this kind of QTPs could be also selective or low

selective. Their selectivities depend on the selectivity of the rdf :type class such

as a:Student within the given semantic web space. For instance, if a:Student

is rarely used, then we can conclude that these QTPs are selective. Otherwise,

we will say that they are low selective.

Based on the above QTP classification, I have gained one hint to take the selec-

tivity of each subgoal (QTP) as the heuristic to plan the query execution. Formally,

I define the source selectivity of a selection procedure sproc for a query subgoal α as

the number of sources not selected divided by the total number of sources available:

Selsproc(α) =
|D| − |sproc(α)|

|D|
(4.2)
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According to the above formula, the source selectivity of one subgoal is inversely

proportional to the number of sources that can contribute to solving this subgoal.

Furthermore, I also observe that the join selectivity of a pair of QTPs is often

higher than the overall selectivity of these two QTPs treated independently. Con-

sider two QTPs q1 and q2 from the same conjunctive query that share a variable

x, in database parlance this situation is called a join condition and x is the join

variable. I note that the number of sources required to answer the query are often

less than (qsources(q1) ∪ qsources(q2)). If we load the sources for q1 first, we can

find a set rs of variable bindings for q1 from the triples contained in the sources.

We can then apply each substitution θ ∈ rs to q2 to generate a set of queries and

get a set of sources for q2 by doing index lookups for each
∪

θ∈rs qsources(q2θ). It

should be clear that by adding an additional constant to each QTP (thus, belonging

to highly selective QTPs), this join approach often has a higher source selectivity

than naively applying qsources to each QTP in the query, although note that the

join selectivity depends on which QTP is processed first. For example, for a given

query ⟨?x, affiliation, “lehigh-univ”⟩ ∧ ⟨?x, maker, ?y⟩ with selectivities being 5

and 3,485,607 respectively, if we solve ⟨?x, affiliation, “lehigh-univ”⟩ first to obtain

x’s substitutions and then propagate them to ⟨?x, maker, ?y⟩, the selectivity of

⟨?x, maker, ?y⟩ could be significantly reduced from 3,485,607 to 114 for instance

because of the constant constraint application. Finally, the total number of loaded

sources is 119 =114+5 instead of 3,485,612 = 3,485,607+5.

Based on the above heuristic and observation, I propose the flat-structure algo-

rithm, which takes a set of rewritings of the given query as its inputs to solve queries.
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qtp2 

qtp1 

qtp2 qtp1 qtp3 

qtp2 

q(?p, ?n, ?pap) 

<?p  swrc:affilitation  lehigh-univ>    <?pap  foaf:maker  ?p>    <?pap  akt:has-title  semantic-web>  

Θ = {} 

<?pap  foaf:maker  ?p>  

Total # of srcs: 4million 

 

Θ = {} 

<?pap  akt:has-title  semantic-web >  

Total # of srcs: 75 

Θ={ ?pap/paper1, ?pap/paper2, ?pap/paper3  

           ?pap/paper4, ?pap/paper5 } 

<?pap  foaf:maker  ?p>  

Total # of srcs: 90 

Θ = {{?pap/paper1, ?pap/paper2, ?pap/paper3, ?pap/paper4, ?pap/paper5} × 

        {?p/person1, ?p/person2, ?p/person3, ?p/person4, ?p/person5}} 

<?pap  foaf:maker  ?p> 

Total # of srcs: 9 

Θ ={?p/person2,?pap/paper1}, ?p/person3, ?pap/paper2}, 

{?p/person5,?pap/paper3}, {?p/person1,?pap/paper4}} 

 

Θ = {} 

<?p  swrc:affilitation  lehigh-univ>  

Total # of srcs: 80 

Θ={{ ?pap/paper1, ?pap/paper2, ?pap/paper3  

         ?pap/paper4, ?pap/paper5 } 

<?p  swrc:affilitation  lehigh-univ>  

Total # of srcs: 80 

 

Figure 4.3: One example optimization tree of the flat-structure algorithm

Note, each query rewriting is a conjunctive query that is generated by using the do-

main and mapping ontologies and has a subset of the answers to the original query

as its answers. The union of the answers of all query rewritings is equivalent to the

set of answers of the original query. For each rewriting, the algorithm employs a

source selection strategy that prioritizes selective subgoals of the query and uses the

sources that are relevant to these subgoals to provide constraints that could make

other subgoals more selective. In this way, the data sources will be incrementally

collected and processed. Once sources are selected, we can load them into Reasoner

to solve queries over these sources and their corresponding ontologies.

Figure 4.3 shows us an example. In this tree, each node consists of three fields:

the available substitutions, the QTP node and the selected sources. This sample
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query includes three QTPs: ⟨ ?p, swrc:affiliation, lehigh-univ ⟩ (qtp1), ⟨ ?pap,

foaf :maker, ?p ⟩ (qtp2) and ⟨ ?pap, akt:has-title, “semantic-web” ⟩ (qtp3). Using

the term index, we might find that these QTPs’ selectivities are 80, 4 million and

75 respectively. Since qtp3 is the most selective, we load and evaluate its sources

first. Then, we apply the obtained substitutions for ?pap into qtp1 and qtp2. After

this step, their selectivities are updated to be 80 and 90 respectively. Note, the

dashed line in this step means qtp1 does not have join relation with qtp3. Thus, its

selectivity is conserved down. Then, we start to evaluate the next most selective

QTP, qtp1, and apply its substitutions for ?p into qtp2. After this step, we only

have qtp2 left and evaluate it. Finally, the numbers of sources selected by each QTP

are 75 for qtp3, 80 for qtp1 and 9 for qtp2. Therefore, the total number of sources

identified by the given query is 75+80+9 = 164. Note, in this process, we keep track

of all sources that have been loaded, and do not repeat the loading of any source

while answering a particular query.

The pseudo code of the flat-structure algorithm is shown in Algorithm 2 (Fig-

ure 4.4). It takes a conjunctive query rewriting as its input. First, the algorithm

initializes the selectivity of each QTP contained in sibs, by executing a term index

lookup (Lines 5-6). At this step, if any bindings have been available, each is used as

a substitution to the corresponding qtp for its index lookup (Line 7). Here, sibs is

an array of sets of sources and indexed by QTPs. Then, it assigns the most selective

QTP to on and collects its relevant sources (Lines 8-10). Meanwhile, it removes on

from sibs (Line 11) and evaluates on to get its substitutions (Lines 12-13). Each sub-

stitution θ is then applied to on’s siblings to constrain their individual selectivities

(Line 7). Based on the new selectivity, the next most selective node is chosen and
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Algorithm 2 the flat-structure algorithm 

function OptimizeQuery(Query q) returns a list of sources  

       inputs: q, a conjunctive query   

1:   Let allsrcs = �, query = true, sibs = a set of qtps in q, �� � � 

2:   srcs[] = array of sets of sources, indexed by qtps 

3:   while (���� � �) 

4:  for each �	
 � ���� do 

5:       if (�� �  �) then 

6:    srcs[qtp]=index-lookup({qtp}) 

7:       else ��
���	
� � ��� ������� index � lookup"#�	
$%& 

8:       Let '� � ()*+,��-.�"|��
���'01�|& 

9:       �22��
� �  �22��
� 3 ��
��'�� 

10:       Loader (srcs[on], KB) 

11:       sibs = sibs - {on} 

12:       Let �41�5 � �41�5 6 '� 

13:       Let rs = Reasoner(KB, query) 

14: return allsrcs 

 

Figure 4.4: The flat-structure algorithm
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the above process is repeated until all QTPs have been processed (Line 3). Finally,

the sources collected by q are returned (Line 14).

The flat-structure algorithm can be combined with any query rewriting algorithm

that produces a set of conjunctive subqueries. It can support expressive ontology

languages such as OWL 2 QL. According to the official OWL 2 description [54], OWL

2 QL is aimed at applications that use very large volumes of instance data, and where

query answering is the most important reasoning task. In OWL 2 QL, conjunctive

query answering can be implemented using conventional relational database systems

in LOGSPACE with respect to the size of the data (assertions). Therefore, as long

as the Reasoner is sound and complet for OWL 2 QL using a suitable reasoning

technique, the flat-structure algorithm can fully support OWL 2 QL by rewriting

the original query into a set of OWL 2 QL conjunctive subqueries. Here, each

OWL 2 QL conjunctive query rewriting is an OWL 2 QL conjunctive query that is

generated by using the domain and mapping OWL 2 QL ontologies and has a subset

of the answers to the original query as its answers.

However, the flat-structure algorithm has the following problems:

• In order to avoid complications with inference impacting the number of sources

for each QTP, it repeats the source selection procedure for each possible query

rewrite. However, when there is significant heterogeneity in the ontologies,

synonymous ontology expressions can lead to an explosion in the number of

query rewrites. Processing a large number of rewrites can slow the system

down, even if we cache the results of index lookups and are careful not to load

the same source multiple times.

• The inability to use the full structure of query rewrites reduces the possible
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source selectivity of the query process. Since source selection is independently

executed for each query rewriting, selectivity is based only on local informa-

tion, and does not account for the possibility that a subgoal that initially

appears selective actually is not selective once all of its rewrites are taken into

consideration.

4.3.2 Correctness Proof

As introduced in the last section, the flat-structure algorithm executes a constant

constraint directed incremental source collection in order to answer given queries.

The set of collected sources is actually a superset of the minimal set of sources that

are necessary and sufficient to answer given queries. In order to prove the correctness

of the flat-structure algorithm, I first define the minimal sources concept for a given

query. Then, I define the concept of incremental source evaluation to describe my

constant constraint directed source collection. Finally, based on my definitions and

lemmas, the correctness of the flat-structure algorithm is described.

Definition 13. Given a Semantic Web Space SWS = ⟨U , o, s⟩ and a set of sources

S, Theory(S) =
∪

d∈S s(d) ∪
∪

u∈U o(u).

Definition 14. (Minimal Sources, MS) Given a Semantic Web Space SWS =

⟨U , o, s⟩ and a conjunctive query Q, the MS(Q) is a set of sources meeting the

following conditions:

• MS(Q) ⊆ s,

• Theory(MS(Q)) |= Qθ, ∀θ ∈ Ans SWS(Q). The Ans SWS(Q) is defined in

Definition 9,
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• ∀srcs ⊆ MS(Q), ∃θ ∈ Ans SWS(Q), such that Theory(srcs) ̸|= Qθ. Note,

the MS(Q) is unique when there are no duplicate sources in SWS and no

more than one way to infer the same answer.

According to Definition 14, given a conjunctive query Q(X0) = p1(X1) ∧ . . . ∧

pi(Xi) ∧ . . . ∧ pn(Xn), where Xi is a vector of variables and X0 represents the vari-

ables for which bindings must be returned, if
∪

u∈U o(u) = ∅, MS(Q) = {src|∃θ ∈

Ans SWS(Q) ∧ ∃TP ∈ qtps(Qθ) ∧ src |= TP}. Note,
∪

u∈U o(u) = ∅ means we do

not need to consider the ontology inference.

Lemma 1. (Minimal Sources for single QTP w.r.t. a query Q): Given a Seman-

tic Web Space SWS = ⟨U , o, s⟩ and a conjunctive query Q(X0) = p1(X1) ∧ . . . ∧

pi(Xi) ∧ . . . ∧ pn(Xn), where Xi is a vector of variables and X0 represents the vari-

ables for which bindings must be returned, and assume Ans SWS(Q) = {θ|θ =

{θ1, . . . , θi, . . . , θn}}, where θi is a substitution/set of bindings to Xi, if
∪

u∈U o(u) =

∅ and there are no duplicate sources, MSQ(pi) =
∪

θi∈θ∧θ∈Ans SWS(Q) qsources(piθi).

Proof. According to Definition 14, MS(Q) = {src|∃θ ∈ Ans SWS(Q) ∧ ∃TP ∈

qtps(Qθ) ∧ src |= TP}. Then, for each QTP pi in Q, we can construct a TP

= piθi. Then, MSQ(pi) =
∪

θi∈θ∧θ∈Ans SWS(Q) qsources(piθi) because the following

three conditions hold.

• MSQ(pi) ⊆ s: since pi ∈ atoms(Q), where atoms(Q) = {p1(X1), . . . , pi(Xi), . . . ,

pn(Xn)} and pi is defined in SWS, MSQ(pi) ⊆ s.

• Theory(MSQ(pi)) |= piθi, where θi ∈ θ ∧ θ ∈ Ans SWS(Q): since TP = piθi,

we can construct Theory(MSQ(pi)) = TP .
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• ∀srcs ⊆MSQ(pi), ∃θi ∈ θ∧θ ∈ Ans SWS(Q), such that Theory(srcs) ̸|= piθi:

assume there is a set of sources srcs ⊆ MSQ(pi) and Theory(srcs) |= piθi.

Then, we can find a set of sources MS ′(Q) = MS(Q)−MSQ(pi)+srcs, which

is a mininum set of sources of Q as well. Then, we have two minimum sets

of sources for Q: MS(Q) and MS ′(Q), when
∪

u∈U o(u) = ∅ and there are no

duplicate sources, which is a contradiction to the third condition of Definition

14. Thus, the given condition holds.

Lemma 2. Given a Semantic Web Space SWS = ⟨U , o, s⟩ and a conjunctive query

Q(X0) = p1(X1)∧ . . .∧ pi(Xi)∧ . . .∧ pn(Xn), where Xi is a vector of variables and

X0 represents the variables for which bindings must be returned, if
∪

u∈U o(u) = ∅,

MS(Q) =
∪

pi∈atoms(Q) MSQ(pi), where atoms(Q) = {p1(X1), . . . , pi(Xi), . . . , pn(Xn)}.

Proof. Since
∪

u∈U o(u) = ∅, we do not need to consider the ontology inference.

According to Definition 14,MS(Q) = {src|∃θ ∈ Ans SWS(Q)∧∃TP ∈ qtps(Qθ)∧

src |= TP}. Assume Ans SWS(Q) = {θ|θ = {θ1, . . . , θi, . . . , θn}}. We can get

MS(Q) =
∪

1≤i≤n{src|∃θi ∈ θ ∧ θ ∈ Ans SWS(Q) ∧ ∃TPi ∈ qtps(Qθi) ∧ src |=

TPi} =
∪

1≤i≤n{src|∃θi ∈ θ ∧ θ ∈ Ans SWS(Q) ∧ ∃TPi ∈ piθi ∧ src |= TPi} =∪
1≤i≤n

∪
θi∈θ∧θ∈Ans SWS(Q){src|∃TPi ∈ piθi∧src |= TPi} =

∪
1≤i≤n

∪
θi∈θ∧θ∈Ans SWS(Q)

qsources(piθi).

According to Lemma 1, MSQ(pi) =
∪

θi∈θ∧θ∈Ans SWS(Q) qsources(piθi).

Thus, we can get MS(Q) =
∪

1≤i≤n MSQ(pi) =
∪

pi∈atoms(Q) MSQ(pi)

Till now, I have defined the minimal sources concept MS(Q) and MSQ(pi) for a
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given query and its each QTP respectively in Definition 14 and Lemma 1. Since the

flat-structure algorithm executes an incremental source collection, in the following

part I will define the concept of incremental source evaluation to describe my con-

stant constraint directed source collection in Definition 16. Then, the correctness

proof of the incremental source evaluation is given in Lemma 4.

Definition 15. (Single QTP Source Evaluation) Given a QTP qtp and an answer

set Ans = {θ|θ = {θ1, . . . , θi, . . . , θn}}, its source collection evaluation is defined to

be qtp sources(qtp, Ans) =
∪

θ∈Ans qsources(qtpθ).

Definition 16. (Incremental source evaluation) Given a conjunctive query Q, its

incremental source evaluation is defined as follows:

(1) Initialize a set of QTPs saying S = {q|q ∈ Q} and an intermediate conjunc-

tive query Q′ = ∅.

(2) From S, pick a QTP q.

(3) Construct an intermediate conjunctive query Q′ = Q′ ∧ q.

(4) Compuate AnsQ′ = QE(Q′,
∪

q∈atoms(Q′) qsources(q)), where QE is the query

engine function that is defined in Section 3.2.

(5) Remove q from S.

(6) Repeat steps (2) - (5) until S = ∅.

Lemma 3. Given a Semantic Web Space SWS = ⟨U , o, s⟩ and a conjunctive query

Q(X0) = p1(X1)∧ . . .∧ pi(Xi)∧ . . .∧ pn(Xn), where Xi is a vector of variables and

X0 represents the variables for which bindings must be returned, if
∪

u∈U o(u) = ∅,

MSQ(pi) ⊆ qtp sources(pi, Ans), where Ans is an answer set to a subquery Q′ of

Q: atoms(Q′) ⊆ atoms(Q). Furthermore, the single QTP source evalulation of pi

is complete w.r.t. MS(Q).
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Proof. Assume Ans SWS(Q) = {θ|θ = {θ1, . . . , θi, . . . , θn}}.

According to Lemma 1, we have MSQ(pi) =
∪

θi∈θ∧θ∈Ans SWS(Q) qsources(piθi)

According to Definition 15, we have qtp sources(pi, Ans) =
∪

θ∈Ans qsources(piθ).

According to Definition 16, we have πvar(pi)Ans SWS(Q) ⊆ πvar(pi)Ans = πvar(pi)

Ans SWS(Q′), where var(pi) is the variables contained in the QTP pi and Q′ is a

subquery of Q.

Thus, we have
∪

θi∈θ∧θ∈Ans SWS(Q) qsources(piθi) ⊆
∪

θ∈Ans qsources(piθ).

Therefore, MSQ(pi) ⊆ qtp sources(pi, Ans).

According to Definition 14, since MSQ(pi) is the minimum set of sources for the

QTP pi within the given Q, we can further conclude that the single QTP source

evalulation of pi is complete w.r.t. MS(Q).

Therefore, Lemma 3 holds.

Lemma 4. Given a Semantic Web Space SWS = ⟨U , o, s⟩ and a conjunctive query

Q, if
∪

u∈U o(u) = ∅, Q’s incremental source evaluation always returns a set of

sources that is a superset of MS(Q).

Proof. I will prove this lemma by two steps: first, I use the mathematical induction

to prove Q’s incremental source evaluation always returns a set of sources that is a

superset of
∪

pi∈QMSQ(pi). Then, based on Lemma 2 MS(Q) =
∪

pi∈Q MSQ(pi),

we can prove that this lemma holds.

Assume Ans SWS(Q) = {θ|θ = {θ1, . . . , θi, . . . , θn}}.

At the beginning, assume we start with a QTP in Q saying pb, (1 ≤ b ≤ n).

The available answer set Ansb = ∅. Then, the mathematical induction proof is as

follows:
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• Base case:

According to Definition 15, qtp sources(pb, Ansb) =
∪

θ∈Ansb
qsources(pbθ) =

qsources(pb).

According to Lemma 1, MSQ(pb) =
∪

θb∈θ∧θ∈Ans SWS(Q) qsources(pbθb).

Thus, according to Lemma 3, MSQ(pb) ⊆ qtp sources(pb, Ansb).

• Recursive case:

AssumeMSQ(pb) ∪MSQ(pb+1) ∪ . . . ∪MSQ(pb+k) ⊆ qtp sources(pb, Ansb) ∪

qtp sources(pb+1, Ansb+1) ∪ . . . ∪ qtp sources(pb+k, Ansb+k) , where 1 ≤

(b, . . . , b+ k) ≤ n.

Then, given Ansb+k+1, we need to prove:

MSQ(pb) ∪MSQ(pb+1) ∪ . . . ∪MSQ(pb+k) ∪MSQ(pb+k+1) ⊆ qtp sources(pb,

Ansb) ∪ qtp sources(pb+1, Ansb+1) ∪ . . . ∪ qtp sources(pb+k, Ansb+k) ∪

qtp sources(pb+k+1, Ansb+k+1) , where 1 ≤ b+ k + 1 ≤ n.

According to Definition 15, qtp sources(pb+k+1, Ansb+k+1) =
∪

θ∈Ansb+k+1

qsources(pb+k+1θ).

Then, according to Lemma 3, we have MSQ(pb+k+1) ⊆ qtp sources(pb+k+1,

Ansb+k+1).

Thus, MSQ(pb) ∪ MSQ(pb+1) ∪ . . . ∪ MSQ(pb+k) ∪ MSQ(pb+k+1) ⊆

qtp sources(pb, Ansb) ∪ qtp sources(pb+1, Ansb+1) ∪ . . . ∪ qtp sources(pb+k,

Ansb+k) ∪ qtp sources(pb+k+1, Ansb+k+1) .

Then, the recursive case holds.

102



www.manaraa.com

4.3. THE FLAT-STRUCTURE ALGORITHM

Therefore, Q’s incremental source evaluation always returns a set of sources that

is a superset of
∪

pi∈QMSQ(pi).

According to Lemma 2,
∪

pi∈QMSQ(pi) = MS(Q).

Then, we can conclude that Q’s incremental source evaluation always returns a

set of sources that is a superset of MS(Q).

Before the correctness proof of flat-structure algorithm (Theorem 2), I first give

the definition of correctness of a source collection algorithm in Definition 17. Ad-

ditionally, the correctness of flat-structure algorithm depends on the correctness of

query rewriting generation, I also give the definition of correct query rewritings in

Definition 18.

Definition 17. Given a Semantic Web Space SWS = ⟨U , o, s⟩, a conjunctive

query Q and a source selection function S, S is correct iff SWS |= Qθ, where

θ ∈ Ans SWS(Q), then S(Q) ⊆ SWS ∧ S(Q) |= Qθ.

Definition 18. Given a Semantic Web Space SWS = ⟨U , o, s⟩, a conjunctive

query Q and a set of Q’s conjunctive query rewritings Qr = {Q1, . . . , Qi, . . . , Qn},

where Qi is a conjunctive query rewriting of Q, Qr is correct iff Ans SWS(Q) =∪
Qi∈Qr

Ans SWS(Qi).

Theorem 2. Given a Semantic Web Space SWS and a conjunctive query Q, the

flat-structure algorithm is sound and complete for any set of correct, conjunctive

rewritings of Q.

Proof. I will first prove the soundness, and then the completeness.

• Soundness:
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Assume the set of sources collected by the flat-structure algorithm is srcs(Q)

and the set of answers to Q entailed by srcs(Q) is Ans. Then we have

srcs(Q) ⊆ SWS. Thus, we can get ∀θ(θ ∈ Ans ∧ Theory(srcs(Q)) |= Qθ →

Theory(SWS) |= Qθ). Therefore, the flat-structure algorithm is sound.

• Completeness:

According to the description of the flat-structure algorithm in Section 4.3.1,

assume Qr = {Q1, . . . , Qi, . . . , Qn} is a correct set of conjunctive query rewrit-

ings of Q and the source selection of the flat-structure algorithm is correct.

For each conjunctive query rewriting Qi, we execute an incremental source

evaluation, whose collected sources is always a superset of MS(Qi) according

to Lemma 4.

Then the set denoted as srcs of sources collected by the flat-structure algo-

rithm for Q is:

srcs(Q) =
∪

Qi∈Qr
srcs(Qi) =

∪
Qi∈Qr

∪
q∈atoms(Qi)

qtp sources(q, Ans), where

Ans is an intermediate answer set that is used to evaluate the sources of each

QTP q in Qi.

Since
∪

q∈atoms(Qi)
qtp sources(q, Ans) is complete according to Lemma 3, then∪

Qi∈Qr

∪
q∈atoms(Qi)

qtp sources(q, Ans) is also complete according to Defini-

tion 18 because Qr is correct. Thus, srcs(Q) =
∪

Qi∈Qr
srcs(Qi) is also com-

plete.

Then, we have ∀θ(θ ∈ Ans SWS(Q) ∧ SWS |= Qθ → Theory(srcs(Q)) |=

Qθ).

According to Definition 17, the flat-structure algorithm is complete.
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Therefore, the flat-structure algorithm is sound and complete.

4.4 The Tree-structure Algorithm

In order to overcome the drawbacks of the flat-structure algorithm, I further pro-

pose the tree-structure algorithm. In this section, I first present my tree-structure

algorithm in Section 4.4.1. Then, its correctness proof is given in Section 4.4.2.

4.4.1 Algorithm Description

Given a conjunctive query, the tree-structure algorithm first reformulates this query

into a rule-goal tree (Section 4.1) and each goal node is associated with its selectivity

(Section 4.3). Beginning with this tree, the algorithm chooses the most selective

QTP leaf goal node as the starting point from a frontier node set, which consists

of the lowest level of unprocessed goal nodes in the rule-goal tree. Then, for each

AND mapping rule containing the chosen QTP, the algorithm starts from the most

selective QTP and greedily collects sources of the QTPs contained in this rule by

applying available constant constraints from the chosen QTP each time into its join

sibling QTPs until all nodes of this AND rule has been processed. As a result,

we can reduce the number of selected sources and gain higher selectivity. Then,

the selected sources will be broadcast upward to the corresponding parent QTP

goal node of the current rule node, added into the source list of this goal node and

the selectivity of this goal node is updated. After this step, the frontier node set

is renewed. With the new selectivities, the algorithm then selects the next most
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(6)

q

Q(?p, ?n, ?pap)

<?p, akt:full-name, ?n>: 4X10
6
/4/10

<?pap, swat:makerAffiliation, “lehigh-univ”>: 20/20/105

<?pap, akt:has-author, ?p>: 3X10
6
/20/20

r0

<?m, swrc:affiliation, “lehigh-univ”>: 20/20/60 <?pap, foaf:maker, ?m>: 4X10
6
/25/25

<?m, akt:has-affiliation, “lehigh-univ”>: 40/40/40

r1

<?p, foaf:name, ?n>: 3X10
6
/6/6

r2

(1)

(2) (3)

(4)

(5)
(7)

Figure 4.5: Query resolution of one sample query with notations in form of initial-
cost/local-optimal-cost/total-cost

selective frontier node to start source collection again. This process is iteratively

executed until all QTP goal nodes have been evaluated. Finally, the collected sources

are loaded into Reasoner to answer the original query. Note, since every collected

source has been loaded into the reasoner in process of its being collected, the original

query can be directly answered.

Figure 4.5 gives an example to introduce how the tree-structure algorithm works.

Consider the rule-goal tree for the given query Q, which asks for the publications
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 (b) 

q(?p, ?n, ?pap) 

<?p  akt:full-name  ?n>      <?pap  swat:makerAffiliation  “lehigh-univ”>    <?pap  akt:has-author  ?p>  

Θ = {{?p/person2,?pap/paper1, ?n/name1}, {?p/person3, ?pap/paper2, ?n/name2},    
        {?p/person5,?pap/paper3, ?n/name3}} 

Θ={} 

<?p  akt:full-name  ?n>    

<?p   foaf:name  ?n>    
Total # of srcs:7million 

Θ={} 

<?pap  akt:has-author  ?p >  

Total # of srcs: 3 million 

 

Θ={} 

<?pap  swat:makerAffiliation  lehigh-univ> 

<?m  swrc:affilitation  lehigh-univ>  

<?m  akt:has-affilitation  lehigh-univ>  
<?pap  foaf:maker  ?m>  

Total # of srcs: 105 

Θ = {?pap/paper1, ?pap/paper2, ?pap/paper3, ?pap/paper4} 

<?pap  akt:has-author  ?p >  

Total # of srcs: 20 

Θ ={?pap/paper1, ?pap/paper2, ?pap/paper3, ?pap/paper4} 

<?p  akt:full-name  ?n>   

<?p   foaf:name  ?n>   
Total # of srcs: 7 million 

Θ ={{?p/person2,?pap/paper1}, {?p/person3, ?pap/paper2 },  {?p/person5,?pap/paper3 }} 
<?p  akt:full-name  ?n>  

<?p   foaf:name  ?n >    
Total # of srcs: 10 

(a) 

Θ = {} 

<?m  swrc:affilitation  lehigh-univ>  

<?m  akt:has-affilitation  lehigh-univ>  
Total # of srcs: 60 

Θ = {} 

<?pap  foaf:maker  ?m>  

Total # of srcs: 4million 

 

<?pap  swat:makerAffiliation  lehigh-univ>     

Θ={?m/maker1, ?m/maker2, ?m/maker3, 
       ?m/maker4, ?m/maker5} 

<?pap  foaf:maker  ?m>  

Total # of srcs: 25 

Figure 4.6: AND-optimization. At each level of the tree a QTP is chosen greedily,
its sources loaded and queried, and the answers applied to sibling QTPs
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affiliated with Lehigh University (“lehigh-univ”), complete with the ids and names

of their authors. In the diagram, each goal node has three associated costs: the

initial-cost is the number of sources relevant to that goal if we do not consider any

axioms, the local-optimal-cost is the number of relevant sources after applying avail-

able constant constraints and the total-cost is the number of sources after applying

available constant constraints and collecting sources from the descendants. Addi-

tionally, the order in which we process goal nodes is indicated by the parenthesized

numbers.

The first step is to use the term index to initialize the tree with source selec-

tivity information, represented by initial costs next to each goal node. The algo-

rithm starts with the QTP leaf node that selects the fewest sources: ⟨?m, akt:has-

affiliation,“lehigh-univ”⟩ (labeled with (1)). Since this is an OR node, the algo-

rithm simply propagates its sources up to its parent goal. Thus, the total-cost for

⟨?m,swrc:affiliation,“lehigh-univ”⟩ is updated to 60 (40 sources from its child plus 20

sources of itself; for simplicity of exposition I am assuming that the sets of sources

are disjoint, but this is not a requirement for the algorithm). Since all children of

⟨?m,swrc:affiliation,“lehigh-univ”⟩ have been processed, it joins the leaf nodes as a

candidate for processing, and since it’s total cost is 60, which is less than the initial

costs of all other candidates, it is the next node to be processed. Since it is a child of

r0, an AND rule node (indicated by the arc), we can use it to constrain its sibling

foaf:maker as shown in Figure 4.6(a). First, the algorithm loads all sources associ-

ated with the goal node and issues the goal as a query for these sources. This query

results in the substitutions for ?m: {?m/maker1, ?m/maker2, ...}. Each of these

substitutions is then applied to ⟨?pap,foaf:maker,?m⟩, an index lookup is performed
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for each resulting QTP, and the total set of sources (in this case 25 of them) is used

to update the total cost of this node in Figure 4.5, step (3). In step (4), the total cost

of these nodes (60+25=85) is propagated to their parent swat:makerAffiliation, and

is added to its initial cost (20), resulting in a total cost of 105. Since this node now

has the best selectivity and is the child of an AND rule node (the original query),

another AND optimization is performed shown in Figure 4.6(b). As shown, once

this node is selected, there are two siblings to choose from. However, before we can

determine the cost of these nodes, we must repeat the tree process on the subtrees

rooted at these nodes, thus the number of sources for ⟨?p,akt:full-name,?n⟩ is 7 mil-

lion, the sum of its sources and the sources of its child ⟨?p,foaf:name,?n⟩. I apply

the substitutions from swat:makerAffiliation to each sibling, resulting in the number

of sources of akt:has-author being reduced to 20 (updating its local-optimal-cost

in Figure 4.5), but not changing the sources of akt:full-name. In step (5) of Figure

4.5, the algorithm selects akt:has-author, loads its sources, issues a combined query

with the previous goal, and get a new set of substitutions. These substitutions

are then applied to the subtree of akt:full-name, changing the local-optimal-costs of

foaf:name and akt:full-name to 6 and 4, respectively, and changing the total-cost

of akt:full-name to 10. As a result, the total number of collected sources for the

given conjunctive query is 105 + 20 + 10 = 135, compared to over 11 million if no

optimization was done. Once all sources are loaded, we can ask the original query

of the Reasoner in order to get a final set of substitutions.

Note, a comparison between the tree-structure algorithm and the flat-structure

algorithm (Algorithm 2) is given at the end of this section.

The pseudo code for tree-structure algorithm is shown in Figure 4.7. Algorithm
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Algorithm 3 source selection for tree-structure query optimization  

function getSourceList(rtree, ��) returns a list of sources  

      inputs: rtree, a given rule goal tree rtree 

     ��, a list of substitutions 

1:  Let frontier = leaf nodes of rtree,  

           srcs[] = array of sets of sources, indexed by goal nodes 

2:  for each goal node n in rtree do 

3:        for each � � �� do 

4:        srcs[n] = qsources(��) 

5:  do 

6:        Let n = ��� 	
� ��
� � �������� �|����������|�, p = getParent(n) 

7:         if n is a child of an AND rule node r then 

8:         ������� � ������� � OptimizeANDNode��, �
,-
��� �. �, �����  

9:         else 

10:              ������� � ������� � ������� 

11:       remove n from frontier 

12:       if p has no descendants on frontier then 

13:              add p to frontier 

14: while (.���/
�� 0 1�/���. ���/3) 

15: return srcs[rtree.root]  

 

Algorithm 4 node optimization 

function OptimizeANDNode(on, sibs, srcs) returns a list of sources 

       inputs: on, a given goal node in the rule-goal tree 

       sibs, a set of on’s sibling nodes 

       srcs, an array of sets of sources, indexed by goal nodes 

1:   Let allsrcs = 4, query = true 

2:   �--���� � �--������������� 

3:   load(srcs[on], KB) 

4:   do 

5: Let query = 56��7 8  �� 

6: Let �� = Reasoner (KB, query) 

7:       for each 5/� � �
,� do   

8:  srcs[qtp] = getSourceList(subtree rooted at qtp, rs) 

9: Let on = ��� 	
�� � 9�:9 �;<� =��� >��; ?@��A ������/�� 

10: Remove on from sibs 

11:   �--���� � �--������������� 

12:    Loader(srcs[on], KB) 

13: while (�
,� 0 4)  

14: return allsrcs 

Figure 4.7: The tree-structure algorithm
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3 processes a rule-goal tree, where the parameter rs, which provides a set of sub-

stitutions, is ∅ when first called, but instantiated in recursive calls. I use frontier

to maintain a set of deepest, unprocessed goal nodes in the rule-goal tree; this is

initialized to be the set of leaf nodes. In Lines 2-4, I use the term index to determine

the initial selectivity of all goal nodes in the rule-goal tree. Then, the most selective

node n is chosen from the frontier (Line 6). I check if n is a child of an AND

rule, and if so Algorithm 4 is called to collect sources by using the greedy strategy

(Lines 7-8). If the rule is an OR mapping, the sources from the rule children are

directly broadcast upward to the rule parent goal node p (Lines 9-10). Since this

completes the processing of n, I remove it from our frontier node set (Line 11) and

if p currently has no descendants in frontier, I add p to the frontier (Lines 12-13).

When the frontier contains only the root of the given rule-goal tree, the while loop

terminates and the source collection ends (Line 14). Finally, all collected sources

are returned (Line 15).

Algorithm 4 optimizes an AND node, given a most selective goal node on, its

siblings sibs, and an array of the sources for each node in the tree (the latter is

used as an output parameter to update the log of sources found for each node).

It starts by loading on’s sources into the knowledge base KB. Then, it evaluates

on by asking the reasoner to get the substitutions of the variables contained in on

(Lines 5-6). These substitutions are then applied to on’s siblings to enhance their

individual selectivity (Lines 7-8). Note the recursive call to getSourceList() in line

8; this ensures that any new constraints specified by rs are effectively applied to

the subtree rooted at each sibling. Based on the new selectivity estimations, the

algorithm chooses the next most selective node that shares a join variable with the
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partial query to be the next on (Line 9). Then the algorithm removes on from sibs,

adds its sources to the sources retrieved so far, and loads any newly selected sources

(Lines 10-12). In the next iteration, on is conjuncted with the partial query query,

the reasoner is queried, and the substitutions applied again to the siblings. This

process is repeated until all sibling nodes of the initial given goal node are processed

(Line 13). Finally, the sources collected by the current AND mapping rule are

returned (Line 14).

Compared to Algorithm 4, the flat-structure algorithm (Algorithm 2 in Figure

4.4) essentially executes a variation of Algorithm 4 for every conjunctive query

rewrite. The main difference is that in Lines 7-8, Algorithm 4 iteratively calls

Algorithm 3 to execute a source collection by passing the results among different

query rewrites. While, in Lines 5-7 of Algorithm 2, the flat-structure algorithm only

collects sources within the current processing conjunctive query rewrite and does

not pass the results onto other query rewrites, which limits its ability to use the full

structure of query rewrites as mentioned in Section 4.3.

Even though the tree-structure algorithm can solve the problems of the flat-

structure and non-structure algorithms, it still has the following deficiencies:

• Since finite reformulation trees cannot express rewrites of a query whose re-

formulation involves cyclic rules, completeness is only guaranteed for acyclic

OWLII axioms.

• This approach is incomplete in the presence of equality reasoning (owl:sameAs),

that is, information about which URIs denote the same objects. Essentially,

the equality reasoning is a special case of cyclic axioms because owl:sameAs

is a ubiquitous transitive property.
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4.4.2 Correctness Proof

Similar to the flat-structure algorithm, the tree-structure algorithm also executes a

constant constraint directed incremental source collection in order to answer given

queries. However, it has gained better source selectivity by using the full structure

of query rewrites instead of a list of query rewritings used by the flat-structure

algorithm. In this section, I will prove the correctness of the tree-structure algorithm

based on my previous definitions, lemmas and theorems in Section 4.3.2. First, I

will prove that the tree-structure algorithm selects a subset of the sources collected

by the flat-structure algorithm in Theorem 3. Then, the correctness proof of the

tree-structure algorithm is described in Theorem 4.

Theorem 3. Given a Semantic Web Space SWS and a conjunctive query Q, the

tree-structure algorithm selects a subset of the sources collected by the flat-structure

algorithm.

Proof. Assume an intermediate answer set of solving Q by the tree-structure algo-

rithm is Ans = {θ|θ = {θ1, . . . , θi, . . . , θn}} and a correct set of Q’s conjunctive

query rewritings is Qr = {Q1, . . . , Qj, . . . , Qn} according to Definition 18.

Let the set of sources collected by the rule-goal tree algorithm be S1 and the set

of sources collected by the flat-structure algorithm be S2. Now, I will prove S1 ⊆ S2.

For each s ∈ S1, we have ∃pi(pi ∈ atoms(Q) ∧ s ∈ qtp sources(pi, Ans) ∧

(qtp sources(pi, Ans) = qsources(piθi))), where θi ∈ θ and θ ∈ Ans. Here θi has

two possibilities:

• θi = ∅, which means the available constant constraints of pi is from itself.
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• θi ̸= ∅, which means the available constant constraints of pi is from the eval-

uation of other join QTPs with pi.

Now I will prove s ∈ S2 from pi’s available constant constraints within the rule-

goal tree algorithm.

• θi = ∅: this means the available constant constraints of pi is from itself. Then,

∃Qj((Qj ∈ Qr) ∧ pi ∈ atoms(Qj)).

Since s ∈ S1, S1 =
∪

θi∈θ∧θ∈Ans SWS(Q) qsources(piθi) and θi = ∅, s ∈ qsources(pi).

Since S2 =
∪

θi∈θ∧θ∈Ans SWS(Qj)
qsources(piθi) and θi = ∅, S2 = qsources(pi).

Thus, s ∈ S2.

• θi ̸= ∅: this means the available constant constraints of pi is from the eval-

uation of other join QTPs with pi saying pk ∈ atoms(Q). Then, we have

Q′
r = {Qj|(Qj ∈ Qr) ∧ (pi ∧ pk ∈ atoms(Qj))}.

Assume AnsQj
is an intermediate answer set of solving Qj by the flat-structure

algorithm, vars(pi) is the set of variables in pi and the rule-goal tree generated

by the tree-structure algorithm is T .

Since ∀p(p ∈ atoms(Qj) ∧ Qj ∈ Q′
r → p ∈ atoms(T )), πvars(pi)Ans ⊆∪

Qj∈Q′
r
πvars(pi)AnsQj

.

Then qtp sources(pi, Ans) ⊆ qtp sources(pi,
∪

Qj∈Q′
r
AnsQj

).

Since s ∈ qtp sources(pi, Ans) and S2 = qtp sources(pi,
∪

Qj∈Q′
r
AnsQj

), s ∈

S2.

Thus, we have S1 ⊆ S2. Then, the theorem holds.
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Theorem 4. Given a conjunctive query Q and an acyclic semantic web space SWS,

the tree-structure algorithm is sound and complete for ontologies that can be repre-

sented in AND/OR relations.

Proof. I will first prove the soundness, and then the completeness.

• Soundness:

Assume the set of sources collected by the tree-structure algorithm is srcs(Q)

and the set of answers to Q entailed by srcs(Q) is Ans. Then we have

srcs(Q) ⊆ SWS. Thus, we can get ∀θ(θ ∈ Ans ∧ Theory(srcs(Q)) |= Qθ →

Theory(SWS) |= Qθ). Therefore, the tree-structure algorithm is sound.

• Completeness:

I will use the mathematical induction to prove. According to the tree-structure

algorithm, each query Q is transformed into a rule-goal tree using the onto-

logical axioms. This rule-goal tree is actually an AND-OR tree, which means

we have two types of rule nodes in the rule-goal tree: AND and OR.

– Base case:

∗ If the rule-goal tree consists of a single AND rule node, then we ex-

ecute an incremental source evaluation, which is complete according

to Lemma 4.

∗ If the rule-goal tree consists of a single OR rule node, then we collect

a sum set of its each child node’s relevant sources, which is also

complete.
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– Recursive case:

Assume we have collected complete sources for the rule-goal tree consist-

ing of k interactive AND and OR rule nodes: N1, . . . , Nk.

Given a new rule node Nk+1 that will be added into the rule-goal tree,

we need to prove the source collection of the new rule-goal tree is still

complete.

∗ If Nk+1 is a single AND node, then we execute an incremental source

evaluation for Nk+1 by using the available constatnt constraints.

Since the souce collection for the previous k nodes is complete, ac-

cording to Lemma 4, the source collection for Nk+1 is also complete.

∗ If Nk+1 is a single OR node, then we collect a sum set of its each

child goal node’s relevant sources. Similar to the AND case of Nk+1,

since the souce collection for the previous k nodes is complete, the

source collection for Nk+1 is also complete.

Thus, the recursive case holds.

Therefore, the tree-structure algorithm is complete.

Therefore, the tree-structure algorithm is sound and complete.
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Cyclic Axiom Handling

The cyclic axiom handling for the query answering is particularly important because

cyclic axioms are common in the real world and their correct processing can guar-

antee query completeness. This is because during the process of cyclic axioms, each

iteration of each cyclic axiom could generate new substitutions to those recursive

variables and these substitutions can be then propagated into the following itera-

tions of this cyclic axiom. Thus, the process of each cyclic axiom needs a fix point

computation in which case no more substitutions can be found. Corresponding to

my algorithms, each cyclic axiom needs a fix point computation of the set of its

selected relevant sources based on the term index for the given query. Then, those

selected sources can be loaded into a complete reasoner to obtain complete answers

to the original query. Thus, in order to guarantee the query completeness, I need

special treatment for cyclic axioms. Furthermore, this process should be dynamic

because data on the web is constantly in flux.
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In this chapter, I discuss my improvement of the tree-structure algorithm in Sec-

tion 4.4 to handle cyclic axioms. Since my algorithm is influenced by the Magic Sets

theory [4], I will first give a brief introduction to the traditional Magic Sets theory,

especially the part related to my algorithm. Then, I will describe my cyclic axiom

handling algorithm in two parts: the dynamic cyclic axiom handling algorithm not

including the equality reasoning and the equality reasoning (instance coreference).

Finally, I will give the algorithm’s correctness proof. Note, since Datalog notation

provides a conventional form to represent cyclic axioms, I will follow the Datalog no-

tation in this chapter. The mapping relation between an OWL axiom and a Datalog

axiom is illustrated at Definition 19 in Section 5.1.

5.1 Magic Sets

Definition 19. (Cyclic Axiom) A cyclic axiom is a rule that references the same

atom on both its head and body. It has the form head :- atom1, . . . , atomn, where

∃i(1 ≤ i ≤ n ∧ head = atomi). Map this rule to an OWL representation, its head

and each atomi in the body is a triple pattern as defined at Definition 8. Formally,

atomi/head = p(x, y) or c(x) = ⟨x, p, y⟩ or ⟨x, rdf :type, c⟩, where p ∈ P , c ∈ C,

x/y ∈ R ⊔ V ⊔ L. Here, in a given semantic web space, C refers to the set of all

classes, P refers to the set of all properties, R refers to the set of all constant URIs,

L refers to the set of all literal terms, V refers to the set of all variables.

According to the above definition, for instance, ancestor(x, y) :- ancestor(x, z), an

cestor(z, y) is a cyclic axiom. Note, a cyclic axiom may be explicit or inferred

through the explicit ones. The Magic Sets method provides a strategy to compute
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the fix point of cyclic axiom for simulating the top-down evaluation of a query by

modifying the original cyclic rule by means of additional rules, which cut down on

the irrelevant facts and narrow the computation to what is relevant for answering

the query. Compared to the traditional forward chaining mechanism to compute the

fix point of a cyclic axiom, the advantage of the Magic Sets is that by working top-

down, we can take advantage of efficient methods for doing massive joins only using

the relevant facts computed from the generated magic and modified rules, which

will be introduced later in this part. The Magic Sets applies the SIPS strategy that

describes how bindings passed to a rule’s head by unification are used to evaluate

the predicates in the rule’s body. For instance, let V be an atom that has not yet

been processed, and Q be the set of already considered atoms, then a SIPS specifies

a propagation Q →X V , where X is the set of the variables bound by Q, passing

their values to V .

The method is structured in four steps: rule adornment, rule generation, rule

modification and query processing. They are illustrated as follows by considering

the axiom ancestor(X,Y ) :- ancestor(X,Z), ancestor(Z, Y ) together with a query

ancestor(“John”, Y ), where X, Y and Z are variables and John is a given instance.

• Rule adornment: this phase is to materialize, by suitable adornments, binding

information for predicates. These are strings of the letters b and f , denoting

bound or free for each argument of a predicate in order. First, adornments are

created for query predicates. The adorned query is ancestorbf(“John”, Y ).

In the given rule, ancestorbf(“John”, Y ) passes its binding information to

ancestor(X,Z) by ancestorbf(X,Y )→X ancestor(X,Z). Then, ancestor(X,Z)

is adorned ancestorbf(X,Z). Now, I consider ancestor(Z, Y ), for which there
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is no binding information and can still use the given axiom to expand it. Fi-

nally, I have two resulting adorned rules: ancestorbf(X,Y ) :- ancestorbf(X,Z),

ancestorff(Z, Y ) and ancestorff(Z, Y ) :- ancestorff(Z,W ), ancestorff(W,Y ),

where W is a new introduced variable. Note, the second adorned rule is ex-

panded from ancestorff(Z, Y ) using the given axiom.

• Rule generation: the adorned program is used to generate magic rules. For

each adorned predicate p in the body of an adorned rule ra, a magic rule rm

is generated such that (i) the head of rm consists of magic(p), which is essen-

tially a new introduced predicate, and (ii) the body of rm consists of the magic

version of the head of ra, followed by all of the regular predicates of ra which

can propagate the binding on p. Take the adorned rule of ancestorbf(X, Y )

:- ancestorbf(X,Z), ancestorff(Z, Y ) in Step (1) for example, we can generate

two magic rules: magic ancestorbf(X,Z) :-magic ancestorbf(X,Y ), ancestorff

(Z, Y ) andmagic ancestorff(Z, Y ) :-magic ancestorbf(X,Y ), ancestorbf(X,Z).

For the adorned rule ancestorff(Z, Y ) :- ancestorff(Z,W ), ancestorff(W,Y ),

two magic rules are also generated: magic ancestorff(Z,W ) :-magic ancestorff

(Z, Y ), ancestorff(W,Y ) andmagic ancestorff(W,Y ) :-magic ancestorff(Z, Y ),

ancestorff(Z,W ).

• Rule modification: the adorned rules are modified by including magic atoms

such as magic ancestorbf(X, Y ) generated in Step (2) in the rule bodies. The

resultant rules are called modified rules. For each adorned rule whose head

is h, I extend the rule body by inserting magic(h). Take the adorned rule of

ancestorbf(X,Y ) :- ancestorbf(X,Z), ancestor
ff
(Z, Y ) in Step (1) for example,
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we can generate one modified rule: ancestorbf(X,Y ) :-magic ancestorbf(X,Y ),

ancestorbf(X,Z), ancestorff(Z, Y ). For the the adorned rule ancestorff(Z, Y )

:- ancestorff(Z,W ), ancestorff(W,Y ), the generated modified rule is ancestorff

(Z, Y ) :- magic ancestorff(Z, Y ), ancestorff(Z,W ), ancestorff(W,Y ).

• Query processing: for each adorned predicate gα of the query, (i) the magic

seedmagic(gα) is asserted, and (ii) a rule g :- gα is produced. In the example, I

generatemagic ancestorbf(“John”, Y ) and ancestor(X, Y ) :- ancestorbf(X,Y ).

The complete rewritten program consists of the magic, modified, and query rules.

Given a non-disjunctive datalog program P , a query Q, and the rewritten program

P
′
, it is well known that P and P

′
are equivalent w.r.t. Q [4]. In the Magic Sets,

the adornments of Step (1) aims to cover all possible bound/free information based

on the given query and rules. Then, the generated magic rules in the following steps

can easily cut down the irrelevant facts and meanwhile guarantee the completeness

during the fix point computation of the cyclic axioms. For the tree-structure algo-

rithm in Section 4.4, the constant propagation mechanism is essentially the same as

the SIPS strategy. According to the tree-structure algorithm, the available bindings

of each goal node in the rule-goal tree are propagated to its child and sibling goal

nodes in order to select relevant sources. In addition, because my purpose is to

collect relevant sources by constructing boolean queries using the available constant

constraint (bound value) and the predicate instead of the real computation of the

fix point, which is actually accomplished by the Reasoner, it is sufficient to only

apply the rule adornment step into my algorithm. Then, based on the adorned rule-

goal tree, I can easily detect whether two goal nodes have the same predicate and
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adornment. If so, a cycle is formed and I can correspondingly collect those sources

that are necessary for this cycle’s fix point computation.

5.2 Cyclic Axiom Handling Algorithms

In this section, I first introduce my dynamic cyclic axiom handling algorithm not

including equality reasoning. Then, I discuss the equality reasoning (instance coref-

erence).

5.2.1 Cyclic Axiom Handling

When cyclic axioms are considered, the tree-structure algorithm is incomplete. This

is because it does not load all relevant sources that corresponds to a query subgoal,

but instead only loads those that contain the subgoal predicate and its available

variable constraints. On the other hand, each iteration in the cyclic axiom could

generate recursive variable constraints that can be propagated into the following iter-

ations to collect sources. Consequently, the tree-structure algorithm will miss those

sources collected by applying the recursive variable constraints in each iteration.

For instance, take the cyclic axiom ancestor(x, y) :- ancestor(x, z), ancestor(z, y)

and its query ancestor(“John”, y). Assume we have collected sources containing

the substitutions {z/Bob, y/Andy} by using the subgoals ancestor(“John”, z) and

ancestor(z, y) respectively on the term index, the tree-structure algorithm then fin-

ishes processing this axiom because all of its subgoals have been handled and their

corresponding sources have been also collected. However, those sources containing

the recursive descendants of Bob and Andy are still relevant and will be missed
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because of no recursive source collection of the given axiom. Therefore, in order

to guarantee the completeness, we need special treatment for cyclic axioms. Fur-

thermore, this process should be dynamic because data on the web is constantly in

flux.

In order to handle cyclic axioms, there are four key points I need to particularly

take care of:

• How to represent and annotate cyclic axioms in the original rule-goal tree of

the query reformulation?

• Within each iteration of one cyclic axiom, how to compute the new gener-

ated substitutions of the given cyclic axiom that will be passed into the next

iteration? In this process, we call the set of new substitutions Relevant Sub-

stitutions (RS).

• How to apply the RS into the selection of relevant sources by using the term

index?

• In case of multiple cyclic axioms mutually nested in one query, how to identify

their correct computation order?

For the first point, as the traditional Magic Sets theory does, I adorn the cyclic

axioms by using their binding information. Then, I mark them in the rule-goal tree.

In theory, if one goal node G is detected to be one that can be unified with its one

ancestor goal node A on condition that G and A are the same predicate and have

the same adornments, then I detect a cycle C starting with A and ending with G.

However, in practice, I apply that if A and G also have the same bound value, then
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they are not a cycle because A and G collect the same sources by using the term

index and there is no recursive source collection. Formally, a cycle C is denoted as C

= ⟨A,G⟩, where A is C’s starting node and G is C’s ending node. After the cycle is

marked, the rule-goal tree is transformed into a rule-goal graph and each cyclic axiom

is converted into one or more rule-goal graph cycles correspondingly. Essentially, a

rule-goal graph cycle means its corresponding axioms need to be iteratively traversed

until a fix point of its source collection is reached. For the second point, in the rule-

goal graph, the RS of each iteration for one cyclic axiom essentially consists of

the new generated substitutions of the cycle distinguished variables (CDVs) of this

cyclic axiom’s rule-goal graph cycles. I define each graph cycle’s CDVs to be a set

of the distinguished variables of the starting node, which is actually the head of the

first axiom involved in this cycle. At the end of each cycle iteration, I compute the

RS by issuing a conjunctive query consisting of the child goal nodes of the starting

node of the cycle to Reasoner. Then, I apply it into the next iteration if the new

RS is changed. Otherwise, it means we have reached the source collection fix point

of the current cycle. Furthermore, if the RSs of all cycles in the rule-goal graph

for one given cyclic axiom are unchanged, it means the source collection fix point

of this cyclic axiom has been reached. For the third point, I use the conjunction of

each value in the RS and the goal predicate to query the term index. This helps

to significantly reduce the number of potentially relevant sources because of the

constant constraints. For the fourth point, I will employ a cycle stack to plan the

cyclic axiom handling sequence. Each cycle can be pushed onto the stack only if it

is not in the stack. Otherwise, its process will be postponed.

I begin with the cyclic axiom ancestor(x, y) :- ancestor(x, z), ancestor(z, y) and
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Figure 5.1: An example cyclic axiom

its query ancestor(“John”, y) to introduce my algorithm. Figure 5.1 shows its rule-

goal graph. The back arrow means a cycle is marked. Each goal node has associated

adornments (bf or ff) and selectivity (the number of relevant sources).

At the beginning, using the term index, each goal node of the rule-goal graph

is initialized with their respective selectivities and bindings. In this example, there

are two cycles: C1 = ⟨G3, G4⟩ and C2= ⟨G3, G5⟩. I use S to stand for the cycle

stack. Initially, the algorithm starts with the most selective node G2 and uses its

substitutions e.g. {z/Bob} to constrain its sibling G3. As a result, the selectivities

of G3 and its child G4 are both updated to be 20 for example by issuing a boolean

query “ancestor ∧ Bob”. Then, the algorithm starts with G3’s most selective node

G4. At this time, C1 is detected and pushed onto S. Then, the algorithm starts to

process C1 by starting with G4. Now, C1 is detected again and postponed because

it is also already in S. The algorithm evaluates G4 and applies its available constant

substitution e.g. {u/Andy} into its sibling G5, whose selectivity is updated to be 15

for instance by issuing a boolean query “ancestor∧Andy” and where C2 is detected
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and pushed onto S. Now, S contains C1 and C2. The algorithm starts to process C2

still beginning with G4. Note in this step, the substitution {u/Andy} is propagated

upward from G5 to G3. As a result, the selectivities of G3 and its child G4 are

both updated to be 15 for instance by issuing a boolean query “ancestor ∧ Andy”.

During this process, C1 is detected and postponed again. At this step, C2’s initial

RS (Relevant Substitutions) is {z/Andy, y/Jim}. Then, the algorithm evaluates G4

and applies its substitutions {u/Jim} for example to G5, where C2 is detected again

and postponed. Then, G5’s selectivity is updated to be 5 for example by issuing a

boolean query “{ancestor ∧ Jim}” and its new substitution is propagated upward

to G3 again. Now, we are at the end of the second iteration of C2 and compute its

new RS to be {z/Andy, y/Jim}, {z/Jim, y/T im}. Compare to the previous RS,

we have obtained one new substitution {z/Jim, y/T im}, which is then applied into

the next iteration of C2 to select relevant sources. This process is repeated until

C2’s next new RS is unchanged compared to the last one. This means C2’s source

collection fix point has been reached and C2 is popped. Now, S only contains C1.

Then, the algorithm goes back to the context of C1 to do the same process as C2’s.

Obviously, in processing the next iteration of C1, C2 will be met again. The previous

C2 process is repeated. Meanwhile, at the end of each C1’s iteration, the algorithm

also computes C1’s RS and applies it into its next iteration to collect sources until

the new RS of C1 is unchanged meaning C1’s source collection fix point has been

reached. Finally, the algorithm finishes processing C1 and C2 and correspondingly

collects all relevant sources of the given cyclic axiom.

Note, in the above process, C1 = ⟨G3, G4⟩ and C2= ⟨G3, G5⟩ are actually re-

dundant cycles because they collect the same data sources. Therefore, we need to
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avoid such repeated source collections. My algorithm detects if two cycles are re-

dundant, which means that each node in one cycle exactly has the same predicate

and adornments as a node in the other one and vice versa. These redundant cycles

are categorized into different redundant cycle classes and stored into a structure

called Redundant Cycle Base (RCB), which is created to collect and organize re-

dundant cycles. A redundant cycle class in RCB is a set of cycles that contain the

same axioms and adornments. Redundant cycles cause redundant source collection

because they could generate the same recursive constants and then collect the same

sources multiple times. Therefore, during the process of each redundant cycle, I

need to check if the new recursive constant has been used by other cycles that are

redundant with the current cycle. If not, I continue to start the next generation.

Otherwise, I will skip this constant. Here, the algorithm cannot handle only one

cycle instead of other cycles belonging to the same redundant cycle class because

redundant cycles could have different recursive constants generated to collect differ-

ent data sources due to their different positions in the rule-goal graph. Then, even

though C1 = ⟨G3, G4⟩ and C2= ⟨G3, G5⟩ are both pushed onto the cycle stack in

the given example, I can still avoid the repeated source collection. In addition, for

those instances that match query constants or that are used as join conditions, their

equivalence (owl:sameAs) closures of source collection are computed on the fly by

calling the equality reasoning algorithm in Section 5.2.2.

The pseudo code for the cyclic axiom handling algorithms is shown in Figures 5.2

and 5.3. These algorithms are based on the tree-structure algorithm in Figure 4.7.

The bold lines in Algorithm 5 and Algorithm 6 and the whole Algorithm 7 are new

parts to handle cyclic axioms. During the execution, Algorithm 5 calls Algorithms
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Algorithm 5 source selection  

function getSourceList(rgraph, ��, q)returns a list of sources  

      inputs: rgraph, a given rule-goal graph (cyclic or non-cyclic) 

     ��, a list of substitutions 

     q, a list of query triple patterns 

1:  Let frontier = leaf nodes or cycle ending nodes, static EKB = φ, static RCB = φ 

           srcs[] = array of sets of sources, indexed by goal nodes 

2:  for each goal node n in rgraph do 

3:        if n has constant C and �. ����	
���
���
�� � ��� then 

4:        computeSameAs({C}, EKB) 

5:        for each � � �� do 

6:        srcs[n] = qsources(��, EKB) 

7:  do 

8:        Let n = ��� ���� � ���� !�� "|��$�%�&'()|*, p = n.parent 

9:        if n is a cycle ending node AND �. 
+
�� � �+
��,-

. then 

10:          update(n.cycle, RCB) 

11:          push(CycleStack, n.cycle) 

12:         �/
�%�) 0 �/
�%�) 1 234567897:;<=73>9?4"�. 
+
��, /�, � * 

13:          pop(CycleStack) 

14:      if n is a child of an AND rule node r then 

15:                  ��$�%A) 0 ��$�%A) 1 OptimizeANDNode"�N�OAP,  

   �, ��QR��N� &S �, ��$�, T, UVW, XYW*  

16:      else 

17:                  ��$�%A) 0 ��$�%A) 1 ��$�%�) 

18:                  if n is a child of rgraph.root and rgraph is a cycle then 

19:   load(srcs[n], KB) 

20:    Let /�
 = askReasoner (KB, rgraph) 

21:    Let insts = extractJoinInsts(rsc) 

22:    computeSameAs(insts, EKB) 

23:    rgraph.RS = computeRS(rgraph.CDVs, RCB) 

24:       remove n and its siblings from frontier 

25:       if p has no descendants on frontier then 

26:                   add p to frontier 

27: while (S�&�Z�(� [ \�N�OAP. �&&Z]) 

28: return srcs[rgraph.root]  

 

 

Figure 5.2: The cyclic axiom handling algorithm - part 1
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Algorithm 6 node optimization 

function OptimizeANDNode(rgraph,on,sibs,srcs,q,EKB,RCB)return a list of sources 

       inputs: rgraph, a rule-goal graph; on, a goal node  

       sibs, on’s sibling nodes;  srcs, an array of sets of sources 

       q, a list of query triple patterns; EKB, the EquivalenceKB; 

       RKB, the redundant cycle base 

1:   Let ������� � ������	
, load(srcs[on], KB) 

2:   do 

3: q = � 
  �	, �� = askReasoner (KB, q) 

4: Let insts = extractJoinInsts(rs) 

5: computeSameAs(insts, EKB) 

6:       for each ��� � ���� do   

7:         srcs[qtp] = getSourceList(subgraph rooted at qtp, rs, q) 

8: Let on = ��	� � ���� ���� ���� ���� �� !" #������
$ 

9: Remove on from sibs 

10:   ������� � �������%������	
, load#������	
, +,$ 

11:    if on is a child of rgraph.root AND rgraph is a cycle AND  

 -./- � 0 then 

12:         load(srcs[on], KB) 

13:        Let 1-2 = askReasoner (KB, 131456) 

14:         Let insts = extractJoinInsts(rsc) 

15:         computeSameAs(insts, EKB) 

16:         rgraph.RS = computeRS(rgraph.CDVs, RCB) 

17: while (���� 7 0)  

18: return allsrcs 

 

Algorithm 7 source selection for cyclic axioms  

function getCyclicSourceList(rgraph, ��, q) returns a list of sources  

      inputs: rgraph, a given rule-goal graph;  ��, a list of substitutions 

      q, a list of query triple patterns 

1: Let ��8	� �  ��, firstIt = true, allsrcs = 0 

2: while (��8	� 7 0 OR firstIt)  

3: ������� � �������  % getSourceList#�C���D, ��8	�, �$ 

4: ��8	� = rgraph.RS 

5: clear(rgraph.RS), firstIt = false 

6: return allsrcs  

 

Figure 5.3: The cyclic axiom handling algorithm - part 2
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6 and 7 to compute the source collection fix point of cyclic axioms. Among them,

Lines 3-4 and 22 in Algorithm 5, and Lines 5 and 15 in Algorithm 6 are for equality

reasoning that will be introduced in Section 5.2.2. Lines 9-13 in Algorithm 5 are for

source collection of cyclic axioms contained in the original query using cycle stack.

Lines 18-23 in Algorithm 5 and Lines 11-16 in Algorithm 6 are for recursive constant

computation that will be passed into the next iteration to collect new sources.

In Algorithm 5, RCB stands for Redundant Cycle Base. EKB is a structure

that collects and organizes equivalence information about instances that will be

illustrated in Section 5.2.2. In the given rule-goal graph rgraph, each goal node has

been adorned with its own binding information. In line 6 of Algorithm 5, qsources

is as defined in Definition 12 in Section 3.3. Given a QTP q and a term index I,

qsources(q, EKB) =
∩

c∈terms(q,EKB) I(c), which is essentially a set of data sources

that are relevant with q. The EKB is used here to collect q’s relevant sources by

using both q’s constants and their equivalent constants in EKB. In line 9, when

the current most selective QTP (on) is a cycle ending node, it means that a cycle

is detected and I can use it to update the RCB and then push it onto the cycle

stack (Lines 10 and 11). Note, each goal node in the rule-goal graph can be only

involved in one cycle as an ending node because two cycles sharing one ending

node is equivalent to one cycle starting and ending at these two cycle’s root nodes

respectively that should have been annotated before. Then, Algorithm 7 is called

to compute the cycle’s source collection fix point (Line 12). It repeatedly collects

sources by executing Algorithm 5 if the current cycle’s RS is changed (Lines 2-

5). Here, the RS are computed at the end of each cycle iteration in lines 18-23 of

Algorithm 5 and lines 11-16 of Algorithm 6 by extracting the new substitutions of the
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current cycle’s CDV s (Cycle Distinguished Variables) and then passed to Algorithm

7 for the recursion use. In this process, the function extractJoinInsts(rsc) extracts

join instances from the given substitution list rsc (Line 21 in Algorithm 5, and Lines

4 and 14 in Algorithm 6). Its results are passed to instance coreference handling

algorithm (Algorithm 8 in Figure 5.4) to compute the owl:sameAs source collection

closure (Lines 4 and 22 in Algorithm 5, and Lines 5 and 15 in Algorithm 6). The

function computeRS(rgraph.CDV s.RCB) is to compute the RS of the given rule-

goal graph rgraph (Line 23 in Algorithm 5 and Line 16 in Algorithm 6). Here, for

each recursive constant, the algorithm checks if the redundant cycles of the current

cycle have used it before using RCB and skips it from RS if it has been. When

the source collection fix point is reached, the algorithm returns all collected sources

(Line 6) and goes back to Algorithm 5. Then, Line 13 in Algorithm 5 is continually

executed to pop the processed cyclic axiom.

5.2.2 Equality Reasoning

The equality reasoning is handled in purpose of computing the source collection fix

point of instant coreference using owl:sameAs in order to guarantee query complete-

ness. The owl:sameAs is a special case of cyclic axiom because it is a ubiquitous

transitive property as defined: owl:sameAs :- owl:sameAs, owl:sameAs. Thus, the

cyclic axiom handling algorithm in Section 5.2 is able to handle the owl:sameAs

reasoning. In order to do so, a query needs to be rewritten using owl:sameAs. For

example:

• Original query: q :- name(x, “Tim Berners-Lee”), knows(x, y).
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• Rewritten query: q :- name(x, “Tim Berners-Lee”), owl:sameAs(x, v1), knows(v1,

v2), owl:sameAs(y, v2).

After the rewritting, we now have new subgoals owl:sameAs(x, v1) and owl:same

As(y, v2). In the query reformulation, each of them is marked as a cycle. In order to

compute the source collection fix point of the rewritten query, the cyclic axiom han-

dling algorithm starts with the most selective subgoal such as name(x, “TimBerners

-Lee”) in this example and iteratively applies the available constant constraints to

other subgoals to collect sources. During this process, the availabe constant con-

straints for each variable are computed by answering the intermediate subqueries.

As a result, those subqueries including owl:sameAs QTPs suffer from the explosive

combination of their answers that makes the Reasoner stuck because of the com-

plicated equality reasoning caused by owl:sameAs that generates large number of

answers. Assume the number of answers to q named ans(q) is num ans(q), the

max cardinality of the set of equivalent instances of each instance substitution to

q is maxEqSize(ans(q)) and the number of variables in q is num var(q). Then,

due to the introduction of owl:sameAs, the numbers of answers to the subqueries

of q will increase by num ans(q) × maxEqSize(ans(q))num var(q) times compared

to those subqueries without the owl:sameAs rewriting, which makes the Reasoner

stuck. Consequently, the rewriting-based equality reasoning cannot scale. There-

fore, I propose an optmized equality reasoning algorithm that can overcome this

drawback.

The optimized equality reasoning (owl:sameAs) algorithm is based on the heuris-

tic that within the term index, the QTPs with constant constraints are often highly

selective and thus belonging to highly selective QTPs. For instance, given two
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QTPs: owl:sameAs(rpi:james, ?y) and owl:sameAs(?x, ?y), the first is much more

selective than the second because of the specific constant rpi:james. Therefore,

compared to the way of loading all sources containing the owl:sameAs predicate

to compute the instance coreference closure, this way helps significantly reduce the

number of sources that are involved in the closure computation. Given a query, I

define the set of all instances that are used for the instance coreference fix point

closure computation as Relevant Instances (RI). Since I only compute the equiv-

alence closure of the query constant instances and the join instances during the

query solving, the cardinality of RI is often small. In my design, an EquivalenceKB

structure (EKB) is created to collect and organize equivalence information about

instances in RI. EKB essentially supports the disjoint set data structure opera-

tions on sets of equivalence classes of all known instances. An equivalence class in

EKB is a set of instances that are equivalent to each other (explicitly or implicitly

connected by owl:sameAs). Given an instance Ins in RI, a boolean query “Ins”

AND “owl:sameAs” is dynamically issued to the term index to find all relevant

sources that contain Ins and its explicit equivalent instances. Then, for each new

discovered instance newIns, I further find newIns’s equivalent instances and merge

the equivalence classes containing Ins and newIns. This process is repeated until

no new instances are discovered, which means the source collection fix point of the

equality reasoning is achieved. Note, the equivalence class of each instance in RI is

only computed once. During this process, since I compute the owl:sameAs source

sollection closure of each instance separately instead of constructing intermediate

queries as the rewriting way does, the explosive combination problem can be solved.
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Algorithm 8 Fix point computation for equality reasoning  

function computeSameAs(insts, EKB) returns a list of instances 

1:     inputs: insts, a list of seed URIs 

2:     Let ������� �  �����, oldinsts = insts 

3:     for each uri � insts do 

4: Let bquery = uri + “AND” + “owl:sameAs”  

5: Let srcslist = askIndexer(bquery) 

6: for each � � �������� do  

7:           Let sameAsPairs = �t | t � � �, ���: ������, � � � �, � � ���  y � uri" 

8:           updateEquivalenceKB(uri, sameAsPairs, EKB) 

9:           ������� �  ������� # all instances URIs from sameAsPairs 

10:   Let newinsts = inslist – oldinsts 

11:   ������� �  ������� # ComputeSameAs3��������, 4567 

12:   return inslist  

 

Figure 5.4: Equality reasoning algorithm

The pseudo code of equality reasoning algorithm is shown in Figure 5.4. First, the

algorithm starts with a set of seed instance URIs (Line 2), and uses the term index to

find all sources that contain each of these URIs concatenated with the “owl:sameAs”

predicate (Lines 4 and 5). Note, the seed instances are not all coreferenced instances,

but the instances in the RI of the given query and determined by Algorithm 5

(Figure 5.2). Then, the algorithm extracts new equivalent URIs (Line 7), merges

equivalence classes of seed URIs and new extracted URIs (Line 8), and collects new

URIs (Line 9). This process is iteratively repeated by using any new URIs discovered

as seeds (Lines 10-11) until no more new URIs are discovered.

5.2.3 Correctness Proof

Before I introduce the correctness proof, I first give the definition of a finite Semantic

Web Space in Definition 20.

Definition 20. A Semantic Web Space SWS ⟨U , o, s⟩ is finite if its set of document
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identifiers U is finite.

Here, a finite SWS means that it has finite number of ontological axioms and

facts, which can be exhausted by the cyclic axiom handling algorithm. As a result,

the cyclic axiom handling algorithm can terminate eventually.

Theorem 5. Given a finite Semantic Web Space SWS that contains cyclic rules and

a conjunctive query Q, the cyclic axiom handling algorithm is sound and complete

for ontologies that can be represented in AND/OR relations.

Proof. I will first prove the soundness, and then the completeness.

• Soundness:

Assume the set of sources collected by the cyclic axiom handling algorithm

is srcs(Q) and the set of answers to Q entailed by srcs(Q) is Ans. Then we

have srcs(Q) ⊆ SWS. Thus, we can get ∀θ(θ ∈ Ans ∧ Theory(srcs(Q)) |=

Qθ → Theory(SWS) |= Qθ). Therefore, the cyclic axiom handling algorithm

is sound.

• Completeness:

Since the given SWS is finite, the algorithm can terminate. In addition, I

assume the rule-goal graph generation process is correct. According to Section

5.2.1, the cyclic axiom handling algorithm employs a cycle stack to handle

multiple cycles that are mutually nested. Thus, each recursive QTP in the

rule-goal graph becomes non-recursive when the cycle which the recursive QTP

belongs to is pushed onto the cycle stack. As a result, the algorithm can be

able to focus on processing only one cycle by skipping other nested ones that
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has been pushed onto the cycle stack. Therefore, the completeness proof of

the cyclic axiom handling algorithm has two key parts: the completeness of

the cycle stack strategy and the completeness of the source collection of one

single cycle handling. I will prove the completeness of the algorithm from the

following four cases:

(1) The rule-goal graph generated by the cyclic axiom handling algorithm

consists of only one single cycle.

Assume a goal node pi is the recursive QTP in the only cycle C that needs a

source collection fix point computation. At the beginning, the available answer

set Ansi = ∅. I will prove the completeness using the mathematical induction

method as follows:

– Base case:

According to Definition 15, qtp sources(pi, Ansi) =
∪

θ∈Ansi
qsources(piθ) =

qsources(pi).

According to Lemma 1, MSQ(pi) =
∪

θi∈θ∧θ∈Ans SWS(Q) qsources(piθi).

Thus, according to Lemma 3, MSQ(pi) ⊆ qtp sources(pi, Ansi).

– Recursive case:

Assume MSQ(pi) ∪ MSQ(pi+1) ∪ . . . ∪ MSQ(pi+k) ⊆ qtp sources(pi,

Ansi) ∪ qtp sources(pi+1, Ansi+1) ∪ . . . ∪ qtp sources(pi+k, Ansi+k) ,

where pi, . . . , pi+k are QTPs that are involved into C taking pi as the

recursive one.

Then, given Ansi+k+1, we need to prove:
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MSQ(pi) ∪ MSQ(pi+1) ∪ . . . ∪ MSQ(pi+k) ∪ MSQ(pi+k+1) ⊆

qtp sources(pi, Ansi) ∪ qtp sources(pi+1, Ansi+1) ∪ . . . ∪ qtp sources

(pi+k, Ansi+k) ∪ qtp sources(pi+k+1, Ansi+k+1) , where pi+k+1 is also in-

volved into C.

In order to prove this rule, we need to consider two possibilities:

∗ pi+k+1 ̸= pi, which means pi+k+1 is a non recursive QTP in this

cycle. In this case, the proof is the same as the recursive case proof

of Lemma 4. Thus, the recursive case holds.

∗ pi+k+1 = pi, which means pi+k+1 is the recursive QTP and we are

entering the next iteration of pi’s source collection fix point compu-

tation. In this case, qtp sources(pi+k+1, Ansi+k+1) = qtp sources

(pi, Ansi+k+1). Since the function of qtp sources for a given QTP

is complete according to Lemma 3, the next step is to prove the

process of computing Ansi+k+1 based on Ansi+k is complete, where

either Ansi+k+1 or Ansi+k is an intermediate answer set during pi’s

source collection fix point computation.

Since the computation of Ansi+k+1 from Ansi+k is the same as the

tree-structure algorithm and its corresponding source collection is

complete, according to Theorem 4, the computation of Ansi+k+1 from

Ansi+k is also complete.

Then, MSQ(pi+k+1) ⊆ qtp sources(pi+k+1, Ansi+k+1) = qtp sources(pi,

Ansi+k+1).

Thus, MSQ(pi) ∪ MSQ(pi+1) ∪ . . . ∪ MSQ(pi+k) ∪ MSQ(pi+k+1) ⊆

qtp sources(pi, Ansi) ∪ qtp sources(pi+1, Ansi+1) ∪ . . . ∪ qtp sources(pi+k,
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Ansi+k) ∪ qtp sources(pi+k+1, Ansi+k+1) .

Therefore, the recursive case holds.

According to Lemma 2, we can have MSQ(C) =
∪

pi∈atoms(C)MSQ(pi).

Therefore, we can conclude that the cyclic axiom handling algorithm returns

a superset of sources of MSQ(C).

Assume the returned set of sources is srcs(Q). Then, we have ∀θ(θ ∈ Ans SWS

(Q) ∧ SWS |= Qθ → Theory(srcs(Q)) |= Qθ).

According to Definition 17, the cyclic axiom handling algorithm is complete

in case (1).

(2) The rule-goal graph generated by the cyclic axiom handling algorithm

consists of two parts: one single cycle and the acyclic part.

Its proof consists of the following two parts:

– The acyclic part: it is the same as the tree-structure algorithm, which is

complete according to Theorem 4.

– The single cycle part: it is the same as case (1), which is also complete.

Thus, the cyclic axiom handling algorithm is complete in case (2).

(3) The rule-goal graph generated by the cyclic axiom handling algorithm

contains mulitple non nested cycles.

Its proof consists of the following two parts:

– The acyclic part: it is the same as the tree-structure algorithm, which is

complete according to Theorem 4.
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– The cycle part: assume in the generated rule-goal graph, we have a set of

cycles C = C1, . . . , Ci, . . . , Ck, which are non nested. According to case

(1), the cyclic axiom handling algorithm is complete for each Ci, where

Ci ∈ C. Thus, the cyclic axiom handling algorithm is complete for C.

Thus, the cyclic axiom handling algorithm is complete in case (3).

(4) The rule-goal graph generated by the cyclic axiom handling algorithm

contains mulitple nested cycles.

Its proof consists of the following two parts:

– The acyclic part: it is the same as the tree-structure algorithm, which is

complete according to Theorem 4.

– The cycle part: assume in the generated rule-goal graph, we have a set

of cycles C = C1, . . . , Ci, . . . , Ck, which are nested.

According to Section 5.2.1, the cyclic axiom handling algorithm employs

a cycle stack to handle multiple cycles that are mutually nested. Since

each single cycle process has been approved to be complete in case (1),

the completeness of case (4) can be attributed to the completeness of my

cycle stack strategy, which I will prove using proof by contradiction.

Assume the set of sources collected by the cyclic axiom handling algo-

rithm in case (4) is S.

Assume the cycle stack strategy is incomplete, ∃s∃θ∃TP (θ ∈ Ans SWS

(Q) ∧ TP ∈ qtps(Qθ) ∧ s |= TP ∧ s ̸∈ S).

Since S =
∪

Ci∈C∧pi∈atoms(Ci)
qtp sources(pi, Ansi), s ̸∈

∪
Ci∈C∧pi∈atoms(Ci)

qtp sources(pi, Ansi).
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In other words, ∃Ci(Ci ∈ C∧pi ∈ atoms(Ci)∧s ̸∈ qtp sources(pi, Ansi)).

Since the stack operation is standard and the source collection for one

single cycle has been proved to be complete in case (1), this is a contra-

diction.

Thus, my cycle stack strategy is complete.

Therefore, the cyclic axiom handling algorithm is complete for C.

Thus, the cyclic axiom handling algorithm is complete in case (4).

Based on the proof of cases (1), (2), (3) and (4), the cyclic axiom handling

algorithm is complete.

Then, we have that the cyclic axiom handlig algorithm is sound and complete.
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Evaluation

This chapter describes several experiments that I have conducted to empirically

evaluate my algorithms. For the evaluation of each algorithm, I have conducted

two groups of experiments: the heterogeneity evaluation with multiple ontologies

and the large scale evaluation. I first describe a multi-ontlogy benchmark - Lehigh

Customizable Data-driven Benchmark (LCDBM) that is used in the heterogeneity

evaluation. Then, I introduce my real world experimental data set that is used in

the large scale evaluation. After that, I describe three sets of experiments I have

conducted to evaluate my non-structure (Section 4.2), flat-structure (Section 4.3),

tree-structure (Section 4.4) and cyclic axiom handling (Section 5.2) algorithms. All

experiments are done under OWLII ontology expressivity (Definition 1) and on a

UNIX workstation with Xeon 2.93G CPU and 6G memory. In all cases, I use Lucene

as my Indexer and KAON2 as my Reasoner.

KAON2 [53] is a hybrid reasoner which is able to reason with a larget set of

OWL DL apart from nominals, corresponding to the Description Logic SHIQ(D),
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and Disjunctive Datalog, along with basic built-in predicates to deal with integers

and strings.

For reasoning, contrary to most currently available DL reasoners, KAON2 does

not implement the tableau calculus. Rather, reasoning in KAON2 is implemented by

novel algorithms which reduce a SHIQ(D) knowledge base to a disjunctive datalog

algorithm. These novel algorithms allow applying well-known deductive database

techniques, such as join-order optimizations, to DL reasoning.

KAON2 supports answering conjunctive queries that can be formulated using

SPARQL. Much of, but not entire SPARQL specification is supported. In particular,

only those queries are supported which correspond naturally to conjunctive queries.

The major advantage of KAON2 is that it is a very efficient reasoner when it

comes to reasoning with Description Logics ontologies containing very large ABoxes

and small TBoxes.

6.1 Lehigh Customizable Data-driven Benchmark

(LCDBM)

Generally, the best way to evaluate algorithms is to use real Semantic Web data.

However, I observe that currently available real Semantic Web data sets such as

Linked Open data cloud and Billion Triple Challenge data suffer from the following

drawbacks:

• They have little ontology integration. Even when they do, the mappings be-

tween different ontologies are often simple (in one-depth of rdfs:subClass

142



www.manaraa.com

6.1. LEHIGH CUSTOMIZABLE DATA-DRIVEN BENCHMARK (LCDBM)

Of/owl:equivalentClass/rdfs:subPropertyOf/owl:equivalentProperty rela-

tionships). Consequently, real Semantic Web data sources lack heterogeneity.

• The real world data may have a lot of incorrect information and syntactic

flaws, which lead to significant cleaning effort before they can be initialized.

Due to the above problems, I realize that I should not just evaluate my sys-

tem over the real world data, but also a synthetic data set that has better quality

ontology mappings and increased ontology expressivities. For this purpose, I devel-

oped a multi-ontology benchmark - Lehigh Customizable Data-driven Benchmark

(LCDBM) which can also be used to benchmark other scenarios.

The LCDBM takes a two-level user customization model including an ontology

profile and a web profile for users to describe scenarios required in their specific

evaluations. In this model, the ontology profile allows users to customize the ontol-

ogy expressivities by setting the relative frequency of various ontology constructors,

while the web profile provides users a way to customize the distribution of different

types of desired ontologies.

One sample two-level model is shown in Figure 6.1. In this model, the web profile

shows seven types of ontologies to be generated: RDFS, OWL Lite, OWL DL, DHL,

OWL 2 EL, OWL 2 RL, and OWL 2 QL. Their distribution probabilities are set to

be 0.3, 0.1, 0.2, 0.1, 0.1, 0.1 and 0.1 respectively. This configuration means that in

the final generated ontologies, 30% use RDFS, 10% use OWL Lite, 20% use OWL

DL, 10% use DHL and 10% use each of the three OWL 2 profiles. For each ontology

profile, the distributions of different ontology constructors used in the generated

ontology are also displayed.
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OWL2QL OWL2EL DHL 

RDFS 0.3       OWL Lite 0.1  OWL DL 0.2 

DHL 0.1   OWL2EL 0.1  OWL2RL 0.1 

OWL2QL 0.1 

subClassOf  0.4 

subPropertyOf 0.1 

…… 
allValuesFrom 0 
intersectionOf 0 

…… 
namedProperty 1 

inverseOf 0 

…… 

subClassOf  0.3 

subPropertyOf 0.1 

…… 
allValuesFrom 0.2 0.5 
complementOf 0.1 0.1 

…… 
namedProperty 0.9 

inverseOf 0.1 

…… 

subClassOf  0.2 

subPropertyOf 0.2 

…… 
reflexiveProperty 0.1 
hasSelf 0.15 

…… 
namedProperty 0.4 

…… 
dataIntersectionOf 0.1 

dataSomeValuesFrom 0.2 

 

Ontology 

Profiles 
…… 

subClassOf  0.2 

PropertyDisjointWith 0.1 

…… 
dataSomeValuesFrom 0.2 
intersectionOf 0.1 

…… 
namedProperty 0.2 

inverseOf 0.1 

…… 
dataIntersectionOf 0.1 

namedDatatype 0.1 

Web  

Profile 

…… 

RDFS 

Figure 6.1: Two-level customization model.

There are two core functions in the LCDBM implementation: the axiom con-

struction for the domain ontologies and mapping ontologies and the data-driven

query generation. In the following parts, I will introduce them respectively.

6.1.1 Axiom Construction

The web profile is used to select the user configured ontology profile(s). Then, the

algorithm randomly constructs one parse tree for each ontological axiom by selecting

constructors from four constructor tables (Table 6.1): the axiom type (AT ) table,

the class table (CT ), the object property constructor table (OPT ) and the datatype

constructor table (DTT ). There are ten types of operands in total: class type (C),

named class type (NC), object property type (OP ), named object property (NOP ),

instance type (I), named datatype property (NDP ), facet type (F ), data type

(D), a literal (L) and an integer number (INT ). Note, since the named datatype

property (corresponding to theDatatypeProperty constructor) is the only data type
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property in OWL 2, I do not list the DatatypeProperty constructor in the table.

The C means the operand is either an atomic named class or a complex sub-tree

that has a class constructor as its root. The NC means the operand is a named

class. The OP means the operand can be one of constructors listed in the table of

object property. The NOP , NDP means the operand is not a complex constructor

but a named object property or a named datatype property respectively. The I

means the operand can be a single instance. The F is the facet type borrowed from

XML Schema Datatypes. The D is the data type. The L is a literal. The INT

stands for an integer number for the cardinality restriction. In these types, NC,

NOP , NDP , F , I, L and INT are leaf node types.

In Table 6.1, {x} and {l} stand for a set of instances and a set of literals respec-

tively, whose both cardinalities are set by a uniform distribution and each member

is randomly generated.

For cardinality constructors such asminCardinality,maxCardinality, Cardinal

ity, minQualifiedCardinality, maxQualifiedCardinality, qualifiedCardinality,

since the involved integer value should be positive and 1 is the most common value

in the real world, I apply the Gaussian distribution with the mean being 1, the

standard deviation being 0.5 (based on my experiences) and each generated value

required to be greater than or equal to 1.

For data type constructors, since String and Integer are the most commonly

used in the real world, I chose them to generate my data type statements. Both

of them conform to a uniform distribution. The Integer is randomly selected from

a range between 0 and 9. For instance, when the facet type F is selected, a range

restriction of two integers is constructed. For those data type constructors such as
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dataComplement with both String and Integer being able to be applied, I chose

either with a probability of 0.5.

For those constructors such as rdfs:subPropertyOf taking either OP or NDP

as operands, I chose each of them with a probability of 0.5.

The four tables in Table 6.1 enable users to generate any OWL and OWL 2

sublanguage with different ontology constructors. In the parse tree, the root node

is only selected from the AT table. Then, each other node is selected from the CT ,

OPT and DTT as appropriate. Note, the DTT table is only traversed for those

constructors which can have the data type property NDP as operands such as

dataAllV aluesFromRestriction. The parse tree expansion terminates when either

each branch of the tree ends with a leaf node type or the depth of the parse tree

exceeds the given depth threshold, which is set 3 in my current implementation.

In LCDBM, the number of axioms generated in each domain ontology conforms

to a Gaussian distribution with mean being 35 and standard deviation being 10.

Note, when generating from the ontology profiles, my algorithms generates incon-

sistent ontologies about 10% of the time. Since it only takes several milliseconds

to generate and check consistency of an ontology, we simply discard and regenerate

any inconsistent ontologies.

For ontology mappings, since each mapping is essentially an axiom, I apply

the same algorithm. Besides, I need to consider the linking strategy of different

ontologies. This mechanism is basically the same as the work in [15]. I still create

a directed graph of interlinked ontologies, where every edge is a map from a source

ontology to a target ontology. Before the mapping creation, in order to guarantee

the mapping connectivity and termination, I predetermine the number of terminal
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nodes and randomly choose that number of domain ontologies. This prevents a

non-terminal node from attaining a zero out-degree and maintain the connectivity.

More details can be found in [15].

For every domain ontology, I generate a specified number of data sources. In

LCDBM, this number is set by users according to their individual needs. For every

source, a particular number of classes and properties are used for creating triples.

They can be also controlled by specifying the relevant parameters in my configura-

tion. To determine how many triples each source should have, I collected statistics

from 200 randomly selected real-world Semantic Web documents. Since I found that

the average number of triples in each result document is around 54.0 with a standard

deviation of 163.9, I set the average number of triples in a generated source to be

50 by using a Gaussian distribution with mean 50 and standard deviation 165. In

addition, based on my statistics of the ratio between the number of different URIs

and the number of data sources in the Hawkeye knowledge base [22], I set the total

number of different URIs in the synthetic data set to equal to the number of data

sources times a factor around 2 in order to avoid the instance saturation during the

source generation. In order to make the synthetic data set much closer to real world

data, I ensure that each source is a connected graph, which more accurately reflects

most real-world RDF files. To achieve this point, in my implementation, those in-

stances that have already been used in the current source are chosen to generate

new triples with a high priority.
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Table 6.1: Axiom type, class, property and data type constructors.
Axiom Type Constructor (AT) Class Constructor (CT)

Constructors DL Syntax Op1 Op2 Constructors DL Syntax Op1 Op2 Op3
rdfs:subClassOf C1 ⊑ C2 C C allValuesFrom ∀P.C OP C

rdfs:subPropertyOf P1 ⊑ P2 OP, OP, someValuesFrom ∃P.C OP C
NDP NDP

equivalentClass C1 ≡ C2 C C intersectionOf C1 ⊓ C2 C C
equivalentProperty P1 ≡ P2 OP, OP, one of {x1, ..., xn} {I}

NDP NDP
disjointWith C1 ⊑ ¬C2 C C unionOf C1 ⊔ C2 C C

TransitiveProperty P+ ⊑ P NOP complementOf ¬C C

SymmetricProperty P≡(P−) NOP minCardinality ≥ nP OP INT

FunctionalProperty T ⊑ ≤1P+ NOP maxCardinality ≤ nP OP INT
InverseFunctionalP. T ⊑ ≤1P NOP Cardinality = nP OP INT

rdfs:domain ≥1P ⊑C NOP, C hasValue ∃ P.{x} OP I
NDP

rdfs:range T ⊑ ∀U.D NOP, C,D namedClass C
NDP

disjointUnionOf C− = C−
1 ⊔ C {C} dataAllValues ∀NDP.D NDP D

... ⊔ C−
n and

C−
i ⊓ C−

j = ∅
ReflexiveProperty ∀x : x ∈ ∆I NOP dataSomeValues ∃NDP.D NDP D

→ (x, x) ∈ P

IrreflexiveProperty ∀x : x ∈ ∆I NOP minQualifiedCard. ≥nP OP,NDP INT C,D
→ (x, x) ̸∈ P

AsymmetricProperty ∀x, y : (x, y) ∈ R NOP maxQualifiedCard. ≤nP OP,NDP INT C,D
→ (y, x) ̸∈ P

propertyDisjointWith P1 ⊓ P2 = ∅ OP, OP, qualifiedCard. = nP OP,NDP INT C,D
NDP NDP

hasSelf {x|(x, x) ∈ P} OP TRUE dataHasValue ∃NDP.{l} NDP L
Object Property Constructor (OPT) Datatype Constructor (DTT)

inverseOf P− OP dataComplement ¬D D
propertyChainAxiom P1 ◦ P2 ⊑ P OP OP, dataIntersection D1 ⊓ D2 D D

NDP
namedProperty P dataUnionOf D1 ⊔ D2 D D

dataOneOf {l1, ..., ln} L
namedDatatype ∀f(f ∈ F → F

f(D,NDP)
∈ NDP

xsdDatatype
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6.1.2 Data-driven Query Generation

It is well-known that the RDF data format is by its very nature a graph. Therefore,

a given semantic web knowledge base (KB) can be modeled as one big (possibly dis-

connected) graph. On the other hand, each SPARQL query is basically a subgraph

and in order to guarantee each query has at least one answer, SPARQL queries

should be generated from the subgraphs over the given big KB graph.

In addition, in order to generate reasonable synthetic SPARQL queries, we need

to particularly consider two factors: the variable position in each QTP and the

join patterns among different QTPs. According to the empricial study of real world

SPARQL queries [2], 98.08% of SWDF (Semantic Web Dog Food) queries and 76.8%

of DBPedia queries contain variables in either the subject position or the object po-

sition. 97.7% of SWDF queries and 99.77% of DBPedia queries are in join patterns

of Subject-Subject, Subject-Object and Object-Object. Table 6.2 lists the surveyed

queries’ distributions of the query graph patterns measured by a serialization of the

out-degree of each node of the graph. It also shows that most of the queries in DB-

Pedia and SWDF contain one single triple pattern (66.5% and 97.5% respectively).

Therefore, I have designed and implemented a data-driven query generation al-

gorithm. This algorithm first identifies a subgraph meeting the initial query config-

uration from a big KB graph. Then in order to deal with the variable position in

either the subject or the object in each QTP, I replace some node values within the

extracted subgraph with query variables in an empirical probability of 0.5. Finally,

a conjunctive query based on the variable assigned graph can be generated. During

this process, if the junction node of the subgraph is replaced by a query variable,

this variable is counted as a join variable. As a result, we can generate different
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Pattern DBpedia SWDF

10 66.512% 97.463%
3000 26.683% 0.106%
200 3.773% 1.024%
110 1.371% 0.482%
500000 0.701% 0.010%
2100 0.313% 0.412%
31000 0.195% 0.040%
40000 0.179% 0.020%
6000000 0.107% 0.001%
800000000 0.068% 0.000%
61000000 0.029% 0.001%
others 0.07% 0.420%

Table 6.2: Pattern graph out degree serialization of the real world SPARQL queries
[2].

query join patterns in Subject-Subject, Subject-Object and Object-Object. Among

the generated synthetic queries, 19% has a longest path length of 1, 77% has 2,

and 4% has 3. Table 6.3 lists the distributions of the query graph patterns of the

synthetic queries in terms of the out-degree of each node of the graph.

As shown by Table 6.3, the synthetic queries based on my statistics of the real

world BTC data set in Section 6.2 cover most of the patterns in Table 6.2. Further-

more, the query generator can generate queries with more than one triple pattern in

a greater percentage of 81% than 33.5% of DBPedia and 2.5% of SWDF. Here I hy-

pothesize that the real-world SPARQL queries generally have more than one triple

pattern, as opposed to only one triple pattern by Gallego’s statistics on DBPedia

and SWDF [2]. The query generation process is illustrated by Figure 6.2.

Assume we have constructed a subgraph shown in Figure 6.2(a) based on the
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Pattern Synthetic Queries

10 19%
200 21%
3000 14%
40000 20%
500000 8%
2100 3%
61000000 1%
70000000 5%
800000000 4%
9000000000 2%
10,0000000000 3%

Table 6.3: Pattern graph out degree serialization of the synthetic SPARQL queries. 

 

swrc:last_name 

swrc:first_name 

swrc:james-hendler “James” 

“Hendler” 

swrc:last_name 

swrc:first_name 

?x “James” 

?y 

(a) (b) 

Figure 6.2: Query graph.

KB graph. Within this graph, we could replace swrc:james-hendler and “Hendler”

with the variables ?x and ?y respectively shown in Figure 6.2(b). Then, we could

get the following SPARQL query:

SELECT ?x ?y WHERE { ?x swrc:first name “James” . ?x swrc:last name

?y . }

Figure 6.3 displays the algorithm. First, I randomly select one node start from

KBGraph as the starting node to construct a query pattern graph queryGraph

(Lines 2 and 3). Begin with start, I randomly select one edge that is starting with
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Algorithm 9 Query generation 

function GenerateQueries(KnowledgeBase KBGraph, int numQTP)  

       return: a SPARQL query 

       inputs: KBGraph, the given Knowledge Base graph 

       numQTP, # of query triple patterns in the generated query 

1:   Let queryGraph = {} 

2:   Let start = randomly select one node from KBGraph 

3:   add(queryGraph, start) 

4:   while(numEdges(queryGraph) < numQTP) do 

5: Edge = Randomly select one edge with subject or object “start” within KBGraph 

6: if(isContained(Edge, queryGraph)) then 

7:           continue 

8: add(queryGraph, the ending node “end” of Edge) 

9: add(queryGraph, Edge)  

10: With probability P, replace “end” with a variable  

11: start = Randomly select one node from queryGraph  

12:  for each edge e in queryGraph do 

13: if(hasNoVars(e)) then 

14:  Randomly replace one node of e with a variable 

15:  Let sparqlquery = formQuery(queryGraph) 

16:  return sparqlquery 

 

 

 

 

Figure 6.3: Graph-based query generation algorithm.
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start and not contained in queryGraph and then add this edge with its ending node

end into the queryGraph (Lines 5-9). If the selected edge is already in queryGraph,

I skip this iteration and go select another edge that is not selected before (Lines 6

and 7). Then, I replace end with a new variable in the probability P (Line 10) and

update start (Line 11). In LCDBM, the default value of P is set 0.5. This process

is iterated until the queryGraph includes numQTP edges (Line 4). By this step,

I have successfully constructed one query pattern graph. Next step, I will check if

each edge e in queryGraph contains at least one variable (Lines 13 and 14). If not,

I randomly replace one node of e with a new variable (Line 14). With the variable-

assigned queryGraph, a SPARQL query can be generated and returned (Lines 15

and 16). Note, if the junction node of queryGraph is replaced by a query variable,

this variable is counted as a join variable. In order to achieve the scalability, the

KBGraph may actually be a subset of the original KB.

6.2 Real World Data Set

In all my experiments, I used a subset of the BTC 2009 data set to do the large

scale evaluation. Much of this data set comes from the Linked Open Data Project

Cloud. I have chosen four collections, as summarized in Table 6.4, with a total

of 97,876,622 triples. Using the provenance information that records the websites

where the triples were extracted in the BTC, I recreated local N3 versions of the

original files from the BTC resulting in 20,332,701 data sources. The size of these

data sources varies from roughly 5 to 50 triples each. As a result, their physical size

in the disk space is around 42GB.
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Data Collections Namespace # of Sources # of Triples

http://data.sem- swrc 26,827 205,366
anticweb.org/
http://sws.geo- geonames 2,311,282 14,140,670
names.org/
http://dbpedia dbpedia 10,779,307 55,264,775
.org
http://dblp.rkb- akt 7,215,285 28,265,811
explorer.com
Total 20,332,701 97,876,622

Table 6.4: Data sources selected from the BTC 2009 dataset.

The involved ontologies in my selected data set are listed in Table 6.5. In order

to integrate the four heterogeneous collections, I manually created some mapping on-

tologies, primarily using rdfs:subClassOf , rdfs:subPropertyOf , owl:equivalentClass

and owl:equivalentProperty axioms (these schemas do not have any meaningful

alignments that are more complex). The full set of ontology mappings of these

ontologies is shown in Table 6.6.

My term index construction time over the selected data set is around 58 hours

and its size is around 18GB. Each document takes around 10ms on average to be

indexed. The Lucene configurations are 1500MB for RAMBufferSize and 1000 for

MergeFactor, which are the best tradeoff between index building and searching for

my experiments.
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Ontology Namespace Mapped Ontology(ies)

DBpedia http://dbpedia.org/ontology/ AKT, SWRC, GEONAMES, FOAF
AKT http://www.aktors.org/ontology/ DBpedia, SWRC

portal
SWRC http://swrc.ontoware.org/ontology AKT, DBpedia, SWC
SWC http://data.semanticweb.org/ SWRC

ns/swc/ontology
FOAF http://xmlns.com/foaf/0.1/ AKT, DBpedia, SWRC
GEONAMES http://www.geonames.org/ DBpedia

ontology

Table 6.5: Ontologies for the selected data sources

6.3 Evaluated Algorithms

I have conducted three sets of experiments to evaluate the performance of my four

algorithms. In Table 6.7, I have summarized the various algorithms that were put

under test in different experiments.

6.4 The Non-structure Algorithm Evaluation

6.4.1 Heterogeneity Evaluation

This experiment tests the hypothesis that the term index used by the non-structure

algorithm is superior to the relevance file indices used in OBII-GNS proposed by

Qasem et al [63]. Compared to the non-structure algorithm, OBII-GNS applies an

indexing schema by creating content summary files (relevance statements), which

seems like an unnecessary burden that lessens the likelihood that the approach will

be adopted. In addition, OBII-GNS frequently selects sources that do not contribute

to the eventual results. In the following parts, I will use IR and REL to respectively
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Mapping Ontology Mapping Axioms

map dbpedia akt.owl dbpedia:Person ≡ akt:Person,
dbpedia:Politician ⊑ akt:Person

map dbpedia geonames.owl geonames:Feature ⊑ dbpedia:PopulatedP lace
map foaf atk.owl foaf :name ≡ akt:full-name,

foaf :Person ≡ akt:Person
map foaf dbpedia.owl foaf :Person ≡ akt:Person,

foaf :name ≡ dbpedia:name
map swrc akt.owl swrc:Employee ⊑ akt:Person,

swrc:Person ≡ akt:Person,
akt:Student ⊑ swrc:Person,
swrc:affiliation ⊑ akt:has-affiliation,
swrc:author ≡ akt:has-author,
swrc:title ≡ akt:has-title

map swrc dbpedia.owl swrc:Organization ⊑ dbpedia:Organisation

Table 6.6: Mapping ontologies for the selected data sources

differentiate the term index and the relevance file index. The experimental data set is

synthetic and generated by LCDBM. The LCDBM configurations are 50 ontologies,

1000 data source sources, and a diameter of 6, meaning that longest sequence of

mapping ontologies between any two domain ontologies was 6.

In this experiment, the IR index size is 10.8MB. The time to construct the IR

index is 5,094ms, while it takes 14,593ms to construct the REL index. I issued 200

random queries and computed averages for all metrics mentioned here. Figure 6.4(a)

displays the average number of results and average number of selected sources for

each query. Observe that IR is more selective than REL in source selection but the

query answers are still guaranteed to be the same by checking the query answers of

both systems. In this result, the IR method selects 20-25% fewer sources than the

REL method without losing any completeness.

Figure 6.4(b) compares the response time of both systems, and breaks out the

time to reformulate the query (reform-Time), time to select sources (selectTime),
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Figure 6.4: Source selection and response time of IR and REL
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Algorithm Description Discussed in

Non-structure Does a term index lookup for Section 4.2
each subgoal and loads all
relevant sources to answer queries.

Flat-structure Greedily collect relevant sources Section 4.3
for each query rewrite of the
conjunctive query to answer queries.

Tree-structure Greedily collect relevant sources Section 4.4
by traversing the rule-goal tree
of the origianl query to answer queries.

Tree-structure (cycle The improved tree-structure Section 5.2.1
w/o sameAs) algorithm to handle cyclic axioms

without equality reasoning
Tree-structure (rewrite) The improved tree-structure Section 5.2.2

algorithm to handle cyclic axioms
with equality reasoning by
owl:sameAs rewriting.

Tree-structure (cycle) The improved tree-structure Section 5.2.2
algorithm to handle cyclic axioms
with equality reasoning
optimization.

Table 6.7: Algorithms Under Evaluation

time to load sources from local disk files (loadTime) and time spent by the KAON2

reasoner (reasonTime). The y axis is in logarithmic scale. The key observation is

that the totalTime of IR being 1.31s is around 10% smaller than that of REL being

1.48s. The reason is that in both systems, loading sources is the dominant system

cost, so fewer sources selected result in big gains. In my experiments, the number

of selected sources for IR and REL are 73.58 and 93.92 respectively. It should be

mentioned the IR system has a worse select time being 110.55ms than REL with

3.21ms. This is mainly because the REL system uses a memory-based index, while

IR uses a disk-based index to achieve greater scalability.
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6.4.2 Large Scale Evaluation

Based on BTC data set, I designed eight queries with different constant constraints

including constant URIs and literals to evaluate the non-structure algorithm (Table

6.8). The number of reformulated query terms for each query is determined by the

mapping ontologies and local axioms defined for the selected data sources. Figure

6.5 gives one query reformulation tree for instance Q4. Figure 6.6 shows the per-

formance of the non-structure algorithm for answering these eight queries. Table

6.9 shows the source selectivity of the non-structure algorithm for the given eight

queries by triple/document selecitivity, which is the ratio of the number of selected

triples/documents over the total number of the triples/documents.

In this experiment, since the non-structure algorithm does not yet select all

relevant sources with owl:sameAs information, I assume an environment where any

relevant owl:sameAs information is already supplied to the Reasoner. I do this by

initializing the KB with the necessary owl:sameAs statements.

Through the experimental results, we can have the following three observations:

• The first observation is that the non-structure algorithm is quite selective for

the designed queries in both triple and document selectivity, as shown by Table

6.9. In this result, both triple and document selectivity are less than 0.1% of

all triples and documents collected.

• The second observation is that the non-structure algorithm can scale to real

world data with reasonable reformTime, selectTime, loadTime, reasoning time

and totalTime, as shown in Figure 6.6 (in logarithmic scale) under the designed

queries.
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Query Query string # of
Reformulated
query terms

1 ?person dbpedia:name “James
A. Hendler” .

6

2 ?person akt:full-name “Abir
Qasem” .

6

3 ?paper swrc:author swrc:abir-
qasem .

4

?paper swrc:author swrc:jeff-
heflin .

4 ?person akt:full-name “Abir
Qasem” .

11

?person swrc:affiliation
swrc:lehigh-university .

5 ?person swrc:affiliation
swrc:lehigh-university .

5

6 ?person akt:full-name “Jeff
Heflin” .

11

?person swrc:affiliation ?org .
7 dbpedia:Gargantilla dbpe-

dia:subdivisionName ?name
.

5

?ground dbpedia:ground ?name .
?dbpedia:Almendral dbpe-
dia:subdivisionName ?name
.

8 swrc:uwe-assmann
foaf:based year ?year .

5

?country dbpedia:countryofbirth
?year .
?dbpedia:BeFour dbpedia:origin
?year .

Table 6.8: Test queries
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q 

r2 

r0 

akt:full-name(?person, “Abir Qasem”) 

akt:has-affiliation(?person, swrc:lehigh-univ) 

Q(?person)  

swrc:affiliation(?person, swrc:lehigh-univ) 

foaf:name(?person, “Abir Qasem”) dbpedia:name(?person, “Abir Qasem”) 

r1 

r4 

akt:works-for(?person, swrc:lehigh-univ) 

r5 

akt:studies-at(?person, swrc:lehigh-univ) 

akt:organization-being-visited(?person, swrc:lehigh-univ) 

swrc:employs(?person, swrc:lehigh-univ) 

r3 

swc:affiliation(?person, swrc:lehigh-univ) 

r6 

r7 

Figure 6.5: The query reformulation tree of the query Q4

Query # of Results # of Selected # of Selected
triples documents

1 142 715 143
2 11 36 9
3 2 46 9
4 7 172 29
5 15 163 20
6 16 25342 5069
7 12 24052 5011
8 328 26031 5006

Table 6.9: Source selectivity
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Figure 6.6: Performance of the non-structure algorithm over BTC

• The third observation is that the non-structure algorithm performs better

for queries Q1, Q2, Q3, Q4 and Q5 with selective terms such as “James A.

Hendler”, “Abir Qasem” and “Jeff Heflin” than Q6, Q7 and Q8. This is be-

cause these terms make the algorithm select fewer sources. For those queries

without selective terms such as Q6, Q7 and Q8 having a triple with two vari-

ables, the non-structure algorithm performs worse.
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6.5 The Tree-structure and Flat-structure Evalu-

ation

6.5.1 Heterogeneity Evaluation

The experimental data set is still generated by LCDBM, whose configurations are

20 ontologies, 8000 data sources, and a diameter of 6, meaning that the longest

sequence of mapping ontologies between any two domain ontologies is six. It took

21.5 seconds to build the 75.3MB index. I issued 240 random queries, which are

grouped by the number of unconstrained QTPs from 0 to 10. An unconstrained

QTP is defined to be one with variables for both its subject or object, or with the

rdf:type predicate and a constant object. For each group, I computed the average

query response time, average number of selected sources and average number of index

accesses. Due to the exponential increase in query response time, I only executed

queries with up to 5 and 6 unconstrained QTPs for the non-structure algorithm and

flat-structure algorithm respectively.

Figure 6.7(a) shows how each algorithm’s average query response time is af-

fected by increasing the number of unconstrained QTPs. From this result, we can

see that the tree-structure algorithm and flat-structure algorithm are faster than the

non-structure algorithm. The reason is that unconstrained QTPs are typically the

least selective; thus, the more unconstrained QTPs there are, the more opportuni-

ties there are for the two optimization algorithms to use constraints to enhance the

selectivity of goals. However, the benefits of the tree-structure algorithm become re-

ally noticeable for 5 or more unconstrained QTPs; in this situation the flat-structure

algorithm begins to reveal exponential behavior while the tree-structure algorithm
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Figure 6.7: Heterogeneity experimental results. Average query response time (a),
index accesses (b) and number of selected sources (c) as the number of unconstrained
QTPs varies.
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# of
Flat-structure Tree-structure

unconstrained QTPs
# of query depth branch factor # of nodes
rewrites

0 23 78 40 39
1 48 115 59 57
2 135 217 111 108
3 196 340 185 170
4 313 405 217 202
5 459 503 273 251
6 693 531 297 275
7 557 306 278
8 579 328 294
9 641 352 320
10 740 414 370

Table 6.10: Statistics of the flat-structure query rewrites and the tree-structure tree
depth, branch factor and number of nodes.

remains linear. This is because complex mapping ontologies can lead to a number

of conjunctive query rewrites that is exponential in the size of the query, as shown

in Table 6.10.

Figure 6.7(b) shows how each algorithm’s average number of index accesses is

affected by the number of unconstrained QTPs. Note the index is stored on disk and

is optimized for fast lookups, but a large number of accesses can have a noticeable

impact on performance. From this result, we can see that the tree-structure and flat-

structure algorithms require more index accesses than the non-structure algorithm:

for 5 unconstrained QTPs they require 5.3x and 9.1x more accesses, respectively.

This is because both algorithms take into account the query structure information

while solving the original query and might need several index lookups for the same
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query subgoal but using different substitutions. However, the tree-structure algo-

rithm has 58% fewer index accesses than the flat-structure algorithm. The reason

is that when using the flat-structure algorithm, one QTP can appear in multiple

query rewritings and receive constraints from different sets of siblings representing

different rewrites, while in the tree-structure algorithm the constraints of a sibling

already consider all possible rewrites of the sibling.

Figure 6.7(c) shows how the number of unconstrained QTPs impacts the average

number of selected sources for each algorithm. From this result, we can see the

selectivity of the tree-structure and the flat-structure algorithms are roughly linear,

while the non-structure algorithm is exponential in the number of unconstrained

QTPs. Furthermore, the tree-structure algorithm has a gentler slope for its source

selectivity than the flat-structure algorithm. Note, loading sources is the primary

bottleneck of the system, since it requires that triples be read from the disk or

network. The similar trends in Figure 6.7(a) and Figure 6.7(c) reflect the importance

of source selectivity to overall query response time.

6.5.2 Large Scale Evaluation

Based on the BTC data set, this experiment aims to compare the scalabilities of

the tree-structure algorithm, the flat-structure algorithm and the non-structure al-

gorithm. However, because the non-structure algorithm does not propagate con-

stant constraints when answering queries, it cannot scale to the BTC data set

since most of the synthetic queries have at least one unconstrained QTP. For ex-

ample, consider the query Q:{⟨?x0, swrc:affiliation,“lehigh−univ”⟩.⟨?x2, akt:has−
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Figure 6.8: BTC data set experimental results of the tree-structure and flat-structure
algorithms.

title, “Hawkeye”⟩.⟨?x2, foaf :maker, ?x0⟩.⟨?x0, akt:full−name, ?x1⟩}. For the non-

structure algorithm, the number of sources that can potentially contribute to solving

⟨?x2, foaf :maker, ?x0⟩ is 3,485,607, which is far too many to load into a memory-

based reasoner. Even though some reasoners can load this amount of data as long

as the system has 3GB of memory, load times are typically in the 7 hours range,

which is clearly unsuitable for real-time queries. However, the tree-structure and

flat-structure algorithms can easily handle this query because the number of sources

for the same QTP becomes 114 for instance after join constants are considered.

Thus, I only compare the tree-structure algorithm to the flat-structure algorithm.

I executed 150 synthetic queries with at most 10 QTPs and computed the same

metrics as for the prior experiment. As shown in Figure 6.8(a), the average query

response time of the tree-structure algorithm is 35 seconds, which is a 13% improve-

ment over the flat-structure algorithm. At the same time, it has 25% fewer index

accesses as shown in Figure 6.8(b). Figure 6.8(c) shows that both algorithms se-

lect on average between 450 and 500 sources, and the tree-structure algorithm only

shows a 1.6% improvement over the flat-structure algorithm. I attribute this to the

fact that the semantic mappings of the BTC experiment are not as complex as those
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for the synthetic data set, which leads to a small number of rewrites for each query

when there are potentially many rewrites for a query.

6.6 The Cyclic Axiom Handling Algorithm Eval-

uation

6.6.1 Heterogeneity Evaluation

In this section, I conducted two separate experiments. The first aims to compare

the tree-structure algorithm with the cycle handling algorithm without equality

reasoning (tree-structure (cycle w/o sameAs)) to the tree-structure algorithm with-

out the cycle handling (tree-structure (non-cycle)) and the non-structure algorithm.

The second aims to compare the tree-structure algorithm with the cycle handling in-

cluding equality reasoning optimization (tree-structure (cycle)) to the tree-structure

algorithm without cycle handling (tree-structure (non-cycle)) and the tree-structure

algorithm with owl:sameAs rewriting (tree-structure (rewrite)). In both experi-

ments, since many URIs in either the synthetic dataset or the BTC data set have

the same name space, I have applied the id compression optimization by replacing

their name spaces with a number. As a result, the boolean query lengths and index

size can be reduced. The index compression rates for the synthetic data set and the

BTC data set are 30% and 15.7% respectively. In the evaluated algorithms, the id

compression optimization is denoted “idc”.
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Figure 6.9: Cyclic axiom handling algorithm w/o owl:sameAs experimental results.
Average query response time (a) and cyclic axiom complexity (b) as the number of
unconstrained QTPs varies.

169



www.manaraa.com

CHAPTER 6. EVALUATION

Cyclic Axioms Without Equality Reasoning

In this experiment, I issued 120 random queries to the synthetic data set to measure

the cycle handling algorithm with the increasing cycle complexity, which is related

with two factors: the average number of cycles per query and the average length

per cycle. In addition, since the cycle complexity increases with the number of

unconstrained QTPs, I group the 120 test queries by the number of unconstrained

QTPs (from 0 to 5). In the metrics, I computed the average query response time

and the cycle complexity. The experimental results are shown in Figure 6.9.

Figure 6.9(a) shows how each algorithm’s average query response time is affected

by increasing the number of unconstrained QTPs with cycle complexity increasing.

From this result, we can see that the tree-structure (cycle w/o sameAs) and tree-

structure (cycle w/o sameAs, idc) algorithms are faster than the non-structure algo-

rithm. The reason is that unconstrained QTPs are typically the least selective; thus,

the more unconstrained QTPs there are, the more opportunities there are for the

tree-structure (cycle w/o sameAs) and tree-structure (cycle w/o sameAs, idc) opti-

mization algorithms to use constraints to enhance the selectivity of goals. Due to the

additional cycle handling, the tree-structure (cycle w/o sameAs) and tree-structure

(cycle w/o sameAs, idc) algorithms are slower than the tree-structure algorithm

(non-cycle), but they bring us more complete results as shown in Figure 6.10(b). In

addition, the tree-structure (cycle w/o sameAs, idc) performs 10% better than the

tree-structure (cycle w/o sameAs) algorithm brought by the average boolean query

length compressed by around 12% because of the id compression optimization.

Figure 6.9(b) shows how the cyclic axiom complexity changes with the increasing

number of unconstrained QTPs. As shown in this figure, the most complex test
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queries have 5 unconstrained QTPs, 10 cyclic axioms per query reformulation and

35.5 nodes per cyclic axiom. As a result, the average cycle apperance percentage in

the whole test query set is 4.8%. On the other hand, according to Wang’s survey [79]

of 1275 ontologies, there are only 0.9% cyclic axioms (mainly transitive properties),

which is much less than the precentage of cyclic axioms in my experiment. Thus,

we can see that my cyclic axiom handling algorithm can well scale to the real world.

Equality Reasoning Evaluation

In this experiment, I configure LCDBM to generate the owl:sameAs triples in the

synthetic data set based on my owl:sameAs Sindice statistics of randomly issuing

one term query and taking the top 1000 returned sources as samples. The ratio of

sources containing owl:sameAs is 27.1%. Thus, the LCDBM generates owl:sameAs

triples in a ratio of 27.1% of the total number of triples. As a result, the number

of owl:sameAs triples is 2,765 of 45,673 total triples in 8000 sources. Furthermore,

for each instance involved into the owl:sameAs triple, according to my experiences,

I take a probability of 0.1 to select it from the set of all generated instances in the

whole data set and a probability of 0.9 to select it from the set of all generated

instances in the current source. Thus, all of owl:sameAs triples in my data set

are categorized into different equivalence classes. Each equivalence class is defined

to be a set of instances that are equivalent to each other (explicitly or implicitly

connected by owl:sameAs). In my experimental dataset, all owl:sameAs triples are

categorized into 571 equivalence classes. The largest equivalence class contains 10

instances and the average equivalence class size is 3.7. Like the last experiment,

I still issued 120 random queries and group them by the number of unconstrained
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QTPs (from 0 to 5). In the metrics, I computed the average query response time

and the query completeness. The experimental results are shown in Figure 6.10.

Figure 6.10(a) shows how each algorithm’s average query response time is af-

fected by increasing the number of unconstrained QTPs. From this result, we can

see that the tree-structure (cycle) and tree-structure (cycle, idc) algorithms are faster

and with better scalabilities than the tree-structure (rewrite) algorithm. The reason

is that the tree-structure (rewrite) algorithm suffers from the explosive combination

of query answers due to the introduction of owl:sameAs QTP as illustrated in Sec-

tion 5.2.2. Consequently, the tree-structure (rewrite) algorithm can only scale up to

queries with at most one unconstrained QTP in my experiments because Reasoner

starts to get stuck by those intermediate queries including owl:sameAs QTPs. Due

to the additional cycle and owl:sameAs handling, the tree-structure (cycle) and

tree-structure (cycle, idc) algorithms are slower than the tree-structure algorithm

(non-cycle), but they bring us more complete results as shown in Figure 6.10(b).

Similar to the tree-structure (cycle w/o sameAs, idc) algorithm, the tree-structure

(cycle, idc) algorithm also performs around 10% better than the tree-structure (cy-

cle) algorithm because of the id compression optimization.

Figure 6.10(b) shows the comparison of the completeness of the tree-structure

(cycle), the tree-structure (cycle, idc), the tree-structure (non-cycle) and the tree-

structure (rewrite) algorithms. I take the results of non-structure algorithm as

ground truth because it is complete. The percentage number on top of each tree-

structure bar is the completeness of the tree-structure (non-cycle) algorithm in the

current point. From this result, we can see that the tree-structure (cycle), tree-

structure (cycle, idc) and tree-structure (rewrite) algorithms are more complete than
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the tree-structure (non-cycle) algorithm. Furthermore, the tree-structure (cycle)

algorithm has the same completeness as the tree-structure (rewrite) algorithm but

gains better query response time and scalability (as shown in Figure 6.10(a)).

Source Loading and Query Execution Trade-off Evaluation

Since my system dynamically selects relevant sources and answers queries, com-

pared to the centralized systems that preload all sources into their repositories and

then answer queries, it is meaningful to evaluate the trade-off capability of my

system on the source loading cost and query execution cost by comparing my tree-

structure (cycle) algorithm to centralized systems. In this section, I select KAON2

and OWLIM [38] as my target systems because KAON2 has been employed to be

my query engine in my system implementation and OWLIM scales very well in both

reasoning capability and data scalability [47]. The experimental data set contains

20 ontologies, 8000 data sources, whose size is 121M. I issued 120 random queries.

The experimental results are shown in Figure 6.11.

Figure 6.11(a) shows that the tree-structure (cycle) algorithm needs more query

response time than both OWLIM and KAON2 because it dynamically selects rele-

vant sources and loads them on the fly. According to the results, the source loading

cost percentage w.r.t. the whole query answering cost of the tree-structure (cycle)

algorithm is around 93.6%. Figure 6.11(b) shows the average source loading time.

For OWLIM and KAON2, the average source loading time is calculated through the

time of loading all sources divided by the number of test queries. The reason we

amortized the loading time cost of OWLIM and KAON2 is that the data sources

can be loaded at once and then queries can be answered based on the loaded data.
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Figure 6.11: The tradeoff experimental results. Average query response time (a),
source loading time (b) and system setup time (c).
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Thus, we do not have to repeatedly load the data sources for each query. However,

one drawback of this way is that the longer the loaded data sources are kept in the

triple store, the more stale data the queries will be against. From Figure 6.11(b), we

can see that OWLIM and KAON2 perform better than the tree-structure (cycle).

The reason is that both OWLIM and KAON2 load all sources at once at the begin-

ning, while the tree-structure (cycle) algorithm dynamically plans query execution

and load relevant sources on the fly for each query. Figure 6.11(c) shows the three

systems’ setup time: the index creation time of the tree-structure (cycle) algorithm

and the all source preloading time of both OWLIM and KAON2. As shown by the

results, we can see that the tree-structure (cycle) algorithm has less system setup

time (21.6s) than both OWLIM (295.529s) and KAON2 (121.182s). The reason is

that both OWLIM and KAON2 needs time to do the materialization of reasoning

over the loaded data. In addition, the reason of OWLIM having more system setup

time than KAON2 is because OWLIM materializes its knowledge base into the disk

while KAON2 is only memory-based.

6.6.2 Large Scale Evaluation

Since the non-structure cannot scale to the BTC data set, this experiment only

compares the tree-structure family algorithms. I executed 150 synthetic queries

with at most 10 QTPs. In this experiment, the owl:sameAs statements are from the

BTC data set itself. The percentage of sources containing owl:sameAs is around

3%. In the metrics, I computed the average number of answers, average query

response time, average number of selected sources and average index accesses of

three algorithms: the tree-structure (cycle, idc), the tree-structure (cycle, non-idc)
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and the tree-structure(non-cycle, non-idc) algorithm. The experimental results are

shown in Figure 6.12 and Figure 6.13. According to Figure 6.12, we can see that

the tree-structure (cycle, idc) and the tree-structure (cycle, non-idc) algorithms has

returned 26.8% more answers than the tree-structure (non-cycle, non-idc) algorithm

because of the additional cycle process. Meanwhile, they only have small increases

at the metrics of query response time, index accesses and the number of selected

sources as shown by Figure 6.13. In particular, with the id compression optimization,

the average query length can be compressed by 26%. As a result, the query response

time of the tree-structure (cycle, idc) algorithm has gained around 20% improvement

over the tree-structure (cycle, non-idc) algorithm and is only around 5% more than

the tree-structure (non-cycle, non-idc) algorithm as shown by Figure 6.13 (a).
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Conclusion

7.1 Summary and Analysis

The birth of the Semantic Web drives the evolution of the Web as a global informa-

tion space from a Web of documents to a Web of data, where not only documents

but also data is linked. Semantic Web data typically exhibits features of hetero-

geneity, smallness, dynamicity and large scalability. Under such an environment,

there is often the need to integrate the ontologies and their data sources and ac-

cess them without regard to the heterogeneity and the dispersion of the ontologies.

The traditional procedure to work with multiple, distributed linked data sources

is to load the desired data into a local and centralized system and process queries

in a centralized way against the merged data set. One representative solution is

the Data Warehouse, which is a database used for reporting and data analysis [64].

The data stored in the data warehouse are uploaded from the operational systems,

cleansed, transformed, and placed into the data warehouse or data mart according
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to a schema, such as the star schema. The data marts store subsets of data from a

warehouse. The star schema is a logical arrangement of tables in a multidimensional

database. The goal of data warehouse is to integrate applications at the data level

and create a centralized and unified view of enterprise data holdings. The typical

data warehouse uses staging, integration, and access layers to house its key func-

tions. The staging layer or staging database stores raw data extracted from each

of the disparate source data systems. The integration layer integrates the disparate

data sets by transforming the data from the staging layer often storing this trans-

formed data in an operational data store database. The integrated data is then

moved to the data warehouse database. The access layer helps users retrieve data.

However, centralized systems have many disadvantages. First, they will become

stale unless they are frequently reloaded with fresh data. Second, they can require

significant disk space, especially for those ones that use multiple indices to opti-

mize queries. Finally, there may be legal or policy issues that prevent one from

copying data or storing it in a centralized place. For this reason, I have designed

and developed a federated Semantic Web query answering system. This system

applies an automated mechanism for creating the index used in determining source

relevance and employs a hybrid approach to answering queries that involves ideas

from information retrieval, information integration and knowledge base systems. In

particular, this dissertation makes original contributions to the following research

problems.

I have designed and implemented an efficient, IR-inspired inverted index to in-

tegrate semantic web data sources and determine source relevance. This term index

takes the full URIs of subjects, predicates and objects of RDF triples as tokens.
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When the object is a literal, it tokenizes terms extracted from the literal. For each

term in the term index, there is a posting list that records which documents contains

which terms. As a result, the term index provides a function to determine source

relevance for any given boolean query.

Based on the term index, I first designed and implemented a non-structure query

answering algorithm. This algorithm takes a set of query subgoals as inputs and

loads all relevant sources into a reasoner to solve queries on the fly. The initial

experiments have shown that when using the term index, my system selects 20-25%

fewer sources than in the relevance statements as stated in Section 6.4.1, without

losing any completeness. Since loading sources is the dominant system cost, this

makes the resulting system around 20% faster. However, because the term index

only indicates if URIs or Literals are present in a document, specific answers to

a subgoal of the given query cannot be calculated until the sources are physically

accessed - an expensive operation given disk/network latency. In addition, in the

real world, the number of sources related to a subgoal could be so large that it is

impossible to load all of them into a reasoner to answer queries.

In order to overcome the drawbacks of the non-structure algorithm, I designed

and implemented a flat-structure algorithm. Given a set of conjunctive query rewrit-

ings, this algorithm employs a greedy source selection strategy that prioritizes selec-

tive subgoals of the query and uses the sources that are relevant to these subgoals to

provide constraints that could make other subgoals more selective. During this pro-

cess, a selectivity based query execution plan is dynamically generated. In this way,

the data sources will be incrementally collected and processed. Once sources are se-

lected, I will load them into a reasoner to solve queries over these sources and their
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corresponding ontologies. This algorithm can be combined with any query rewriting

algorithm that produces a set of conjunctive subqueries. My experiment has shown

that the flat-structure algorithm is superior to the non-structure algorithm with

60% better in the query response time, 70% better in the source selectivity and the

ability to solve real world queries. However, when there is significant heterogeneity

in the ontologies, synonymous ontology expressions can lead to an explosion in the

number of query rewrites. Consequently, the flat-structure algorithm can slow the

system down due to the processing of a large number of rewrites. In addition, the

flat-structure algorithm suffers from the inability to use the full structure of query

rewrites reduces the possible source selectivity of the query process.

In order to overcome the drawbacks of the flat-structure algorithm, I designed

and implemented a tree-structure algorithm. Given a rule-goal tree (AND/OR

graph) that expresses the reformulation of a conjunctive query, the tree-structure

algorithm uses a bottom-up approach to estimating the selectivity of each node. It

then prioritizes loading of selective nodes to generate a query execution plan on the

fly and uses the information from these sources to further constrain other nodes.

As with the flat-structure algorithm, a reasoner is employed to answer queries over

the selected sources and their corresponding ontologies. My experiments have shown

that the tree-structure algorithm is better in query response time and source selectiv-

ity than the flat-structure and non-structure algorithms. In particular, the benefits

of the tree-structure algorithm become really noticeable for 6 or more unconstrained

QTPs; in this situation the flat-structure algorithm begins to reveal exponential be-

havior while the tree-structure algorithm remains linear. In the index accesses, the

tree-structure algorithm has 58% less than the flat-structure algorithm. However,
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the tree-structure algorithm only guarantees completeness for acyclic OWLII axioms

and will become incomplete when cyclic axioms are considered. In addition, it is

incomplete when equality reasoning (owl:sameAs) is considered.

In order to handle the cyclic axioms including the equality reasoning (owl:sameAs),

I further designed and implemented a dynamic cyclic axiom handling algorithm. By

employing a cycle stack, this algorithm is able to dynamically computes the source

collection fix point of cyclic axioms to generate a query execution plan on the fly.

Due to the explosive combination of the answers to queries including owl:sameAs

QTP, an equality reasoning optimization algorithm is employed to handle the source

collection of owl:sameAs. My experiments have demonstrated that the cyclic axiom

handling algorithm can effectively handle real world queries with cyclic axioms in

around 36 seconds and meanwhile gurarantee the query completeness.

Besides the experimental evaluation, for all algorithms, I have also theoretically

proved their correctness by two parts: the soundness and the completeness.

Table 7.1 summarizes the advantages and disadvantages of my proposed algo-

rithms.

In summary, this dissertation provides a way to answer distributed queries in

a web like environment that is large-scale and heterogeneous. It does so by using

a term index to determine source relevance for a given query and applying a hy-

brid approach to answering queries that involves ideas from information retrieval,

information integration and knowledge base systems. Till now, I have summarized

the primary research contributions of this dissertation. In the next section, I will

discuss several future directions of this work.
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Algorithm Advantages Disadvantages

Non- Better selectivity and faster than Expensive source loading
structure OBII-GNS algorithm; Complete; given disk/network latency;

More expressive than the Cannot scale to the real
tree-structure family world data set; Unconsider
of algorithms. the structure relations

among different subgoals.
Flat- Better selectivity and faster than Complex ontologies leading
structure the non-structure algorithm; to explosive query rewrites;

Can scale to the real world data Inability to use the full
set; More expressive than the structure of query rewrites.
the tree-structure family
algorithms; Complete for any
complete rewrite algorithm.

Tree- Better selectivity and faster than Incomplete for cyclic
structure the flat-structure and non- axioms and equality reasoning;

structure algorithms. Can scale to Less expressive than the
the real world data set; Complete flat-structure and
for rewrites with AND/OR non-structure algorithms.
tree structure.

Tree Better selectivity and faster than Incomplete for equality
-structure the non-structure algorithm; reasoning; Less expressive
(cycle Complete for rewrites with than the flat-structure and
w/o AND/OR graph structure non-structure algorithms;
sameAs) without equality reasoning; Can Slower than the tree-structure.

scale to the real world data set.
Tree Complete for rewrites with Double number of QTPs; The
-structure AND/OR graph structure with explosive combination
(rewrite) equality reasoning. of answers;Less expressive

than the flat-structure and
non-structure algorithms;
Slower than the tree-structure.

Tree- Better selectivity and faster than Less expressive than the
structure the non-structure algorithm; flat-structure and
(cycle) Complete for rewrites with non-structure algorithms;

AND/OR graph structure with Slower than the tree-structure.
equality reasoning; Can scale
to the real world data set.

Table 7.1: The advantages and disadvantages of the proposed algorithms.
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7.2 Limitations and Future Work

The work presented in this dissertation may be extended in several promising direc-

tions.

7.2.1 Ontology Expressivity Extension

As demonstrated in Chapter 6, my algorithms work when both the domain ontolo-

gies and the map ontologies are expressed in OWLII, which is the subset of OWL

DL that is common with GAV and LAV (Definition 1). However, in terms of

GAV /LAV expressivity, other non-OWLII language constructors such as OWL 2

property composition can be also expressed in GAV /LAV . Thus, it can be added

to OWLII without requiring any change to the source selection algorithms. Addi-

tionally, I would like to identify a fragment of OWL 2 that cannot be rewritten using

GAV /LAV in order to identify my system expressivity. In such cases, my system

can still preserve query semantics but will not harm soundness, since a sound rea-

soner is employed. An example is as follows:

TBox

A(X) ⊑ B(X) ⊔ C(X), which is beyond OWLII (Defintion 1).

ABox

a1:A, a2:A, a3:A, a1:B, a2:B, a3:B, a4:C, a5:C.

Given the above knowledge base a DL reasoner can solve a query Q(X)← A(X),

whose answer set is {X/a1, X/a2, X/a3}.

Then, if we rewrite Q(X)← A(X) into two rules: Q(X)→ B(X) and Q(X)→

C(X). The answer set to the rewritten queries is {X/a1, X/a2, X/a3, X/a4, X/a5}.
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As shown by the above example, even though the GAV /LAV query rewriting

is not equivalent to the origianl query, my system can still find all answers to the

original query. From an algorithm point of view, the main impact by such query

rewriting is the increase of the rule-goal tree size.

7.2.2 Robustness against Stale Indexes

One challenge faced by my system is its dependence on the accuracy of the in-

dex when attempting to select the minimal number of potentially relevant sources.

However, the Web changes, and refreshing the index can be expensive. According to

my statistics using Sindice to compare the triple changes between the current and

cached versions of 1000 different data sources, the ratio of sources with triples added

and removed are 2.1% and 20.4% respectively in 25 days on average. The minimum

time period is 19 days. The maximum time period is 55 days. Here, the cached

version of one document in Sindice is the one that was saved on the Sindice server

sometime before the current version of the same document. Thus, by tracking the

changes of each document from the current version to the cached version, we can

calculate the change rate of data sources in a time period.

My IR-inspired term index is robust in the removal of triples. In the worst case

a source will be selected, but have nothing to contribute when the reasoning engine

computes the final answer to the query. However, if triples are added to a source, my

method could miss a source that is now relevant, resulting in an incomplete answer

to the query. Of course, short of loading all sources that have changed since the

index was built, there is no way to guarantee completeness in the face of dynamic

data. However, it should be possible to identify sources the change frequently and
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to identify change patterns in RDF documents that can be exploited to minimize

the impact of these changes on completeness. Here are some hypotheses that might

be able to be used:

• Data sources rarely change the ontologies from which they use terms.

• Data sources typically use instance names from a small set of namespaces, and

rarely add triples involving instances from new namespaces

• Data sources that have many triples mentioning a particular instance are more

likely to add additional triples about that instance, than data sources that only

have one triple mentioning the instance.

If these hypotheses are correct, then one might choose to extend the existing

source selection algorithm to include some additional sources based on them. For

example, a source may contain many triples about jsmith, however it does not

contain spouse information and thus does not match the goal spouse(jsmith, x).

However, we might still choose to select this source, especially if it uses other vo-

cabulary from the same ontology that defines spouse, under the assumption that if

spouse information become available, this source is likely to contain it.

7.2.3 Query Expressivity Extension

As stated in Chapter 3, my system focuses on conjunctive queries. However, it does

not consider the reformulation of queries that allow constraints to be added to filter

the query answers. In SPARQL terms, these are queries with FILTER applied. For

example:
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• c:State(x) ∧ c:population(x, p) ∧ regex(x, “Penn”).

• b:Bill(x) ∧ b:date(x, d) ∧ d < 2011− 12− 31 ∧ d > 2011− 01− 01.

Reformulating such queries needs to record the constraints information. One possi-

ble way is to label each subgoal with the corresponding constraints if the constrained

variable appears in this subgoal. In the above example, the subgoals c:State(x) and

c:population(x, p) should be labeled with the constraint regex(x, “Penn”). Then,

during source selection, these constraints can be used as filters to improve the source

selectivity. This is especially important in situations with a large number of dis-

tributed sources. The key point of this method is to design an efficient algorithm

that can apply these filters to select potentially relevant sources at the minimum

comparison cost.

Another thing I am still missing is how to reformulate queries that allow infor-

mation to be added to the solution where the information is available, but do not

reject the solution because some part of the query pattern does not match. This

corresponds to SPARQL queries with OPTIONAL applied. Note, for these queries,

the OPTIONAL condition cannot help to increase source selectivity because solving

the OPTIONAL graph patterns depends on the results of solving the basic graph

patterns in SPARQL queries. Thus, I suggest that the OPTIONAL process is left

to the reasoner after relevant source collection.

In addition, in order to avoid the computational challenges of higher-order logics,

my system does not allow variables in the predicate position. This could be another

possible extension.
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7.2.4 Question Translation

Currently, my system takes conjunctive queries as inputs. One better alternative

choice is to take queries expressed in natural language as input and then return

answers from the available knowledge bases. In order to achieve this goal, ontology-

based natural language understanding techniques [50] are required. This procedure

generaly consists of two steps:

• Linguistic translation: translate the natural language described queries into

linguistic triples. For example, the query “Who teaches Semantic Web?” is

parsed into { ⟨?p type Professor⟩ . ⟨?p teaches “Semantic Web”⟩ .}.

• Relation similarity computation: convert the linguistic triples into SPARQL

queries by mapping the linguistic terms in linguistic triples into ontological

terms defined in either domain or mapping ontologies. For example, the above

given linguistic triples are converted into the following SPARQL query:

SELECT ?p WHERE { ?p rdf :type swat:Professor . ?p swat:teaches “Se-

mantic Web” . },

where the linguistic terms of “type”, “Professor” and “teaches” are mapped

onto the ontological terms of “rdf :type”, “swat:Professor” and “swat:teaches”

respectively. Here, the mapping relation can be computed using lexicons such

as the well known WordNet or user’s own lexicon together with string metrics,

which is related to ontology alignment [71].
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7.3 A Vision of the Semantic Web

The World Wide Web has radically altered the way we share knowledge by lowering

the barrier to publishing and accessing documents as part of a global information

space. The inarguable success of search engines may lead one to believe that the Web

has reached its full potential as a global knowledge repository. However, the existing

search technology is unable to meet our information needs due to its limitations of

keyword matching and hypertext linking.

The birth of the Semantic Web helps the Web to reach its true potential by

suggesting a way of extending the existing web with structure and providing a

mechanism to specify formal semantics that are machine-readable and shareable.

The main aim of the Semantic Web is to organize the information found in the Web

in a better fashion and interconnect the various pieces of information so that they can

be used for discovery, automatization, aggregation, and reuse from various, different

and disparate applications, which have not been designed either to work together or

to work with every different piece of information found in the Web. In recent years

the Semantic Web has driven the Web to evolve from a global information space of

linked documents to one where both documents and data are linked. Underpinning

this evolution is a set of best practices for publishing and connecting structured data

on the Web known as Linked Data. Just as the Web has brought about a revolution

in the publication and consumption of documents, Linked Data has the potential

to enable a revolution in how data is accessed and utilised. Within Linked Data,

the heavy reasoning or the AI vision of the Semantic Web has been replaced by a

networked and user-driven Semantic Web. This new view of the Semantic web will

be more lightweight, and geared toward the application of a far less structured and
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more organic approach to dealing with the complexities of the diverse data present

in the Web.

In order to consume the linked data, centralized systems provide a solution by

loading the desired data into a local and centralized storage and processing queries.

However, accounting for the decentralized structure of the Semantic Web, such an

approach may not always be practically feasible or desired. It suffers from problems

of data staleness, siginificant disk space consumption and legal, policy or security

issues. In contrast, the federated query answering system realizes the vision of query

answering against a federation of disctributed and heterogeneous data sources by

splitting the original query into queries that can be answered by the individual data

sources and the results are merged by the federator. Based on the work I (and others)

have done, if the research challenges highlighted in Section 7.2 can be adequately

addressed, I expect that Semantic Web will enable a significant evolutionary step in

leading the Web to its full potential.
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